Browse > Article
http://dx.doi.org/10.5369/JSST.2018.27.2.69

Highly Sensitive Multichannel Interdigitated Capacitor Based Bitterness Sensor  

Khan, Md. Rajibur Rahaman (School of Electronics Engineering, Kyungpook National University)
Kang, Shin-Won (School of Electronics Engineering, Kyungpook National University)
Publication Information
Abstract
In this study, we propose a multichannel interdigitated capacitor (IDC) sensor for detecting the bitterness of coffee. The operating principle of the device is based on the variation in capacitance of a sensing membrane in contact with a bitter solution. Four solvatochromic dyes, namely, Nile red, Reichardt's dye, auramine-O, and rhodamine-B, were mixed with polyvinylchloride (PVC) and N,N-dimethylacetamide (DMAC), to create four different types of bitter-sensitive solutions. These solutions were then individually inserted into four interdigitated electrodes (IDEs) using a spin coater, to prepare four distinct IDC sensors. The sensors are capable of detecting bitterness-inducing chemical compounds in any solution, at concentrations of approximately $1{\mu}M$ to 1 M. The sensitivity of the IDC bitterness sensor containing the Reichardt's dye sensing-membrane was approximately 1.58 nF/decade. The multichannel sensor has a response time of approximately 6 s, and an approximate recovery time of 5 s. The proposed sensor offers a stable sensing response and linear sensing performance over a wide measurement range, with a correlation coefficient ($R^2$) of approximately 0.972.
Keywords
Bitterness sensor; Interdigitated capacitor; Solvatochromic dye; Response time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Toko, Biomimetic Sensor Technology, Cambridge, UK: Cambridge University Press, 2000.
2 M. Palit, B. Tudu, P. K. Dutta, A. Dutta, A. Jana, J. K. Roy, N. Bhattacharyya, R. Bandyopadhyay and A. Chatterjee, "Classification of black tea taste and correlation with tea taster's mark using voltammetric electronic tongue," IEEE Trans. Instrum. Meas., Vol. 59, No. 8, pp. 2230-2239, 2010.   DOI
3 M. R. R. Khan and S. W. Kang, "Highly sensitive temperature sensors based on fiber-optic PWM and capacitance variation using thermochromic sensing membrane," Sensors, Vol. 16, No. 7, 1064, 2016.   DOI
4 T. Yang, Y. Z. Yu, L. S. Zhu, X. Wu, X. H. Wang and J. Zhang, "Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application," Sens. Actuators B Chem., Vol. 208, pp. 327-333, 2015.   DOI
5 S. Majumdar and B. Adhikari, "Taste sensing with polyacrylamide grafted cellulose," J. Sci. Ind. Res., Vol. 65, pp. 237-243. 2006.
6 S. M. Lee, S. W. Jang, S. H. Lee, J. H. Kim, S. H. Kim and S. W. Kang, "Measurement of basic taste substances by a fiber optic taste sensor using evanescent field absorption," Sens. Mater., Vol. 14, No. 1, pp. 11-21, 2002.
7 M. R. R. Khan and S. W. Kang, "Highly sensitive fiberoptic volatile organic compound gas sensor using a solvatochromic-dye containing polymer waveguide based on pulse-width modulation technique," Sens. Lett., Vol. 13, No. 8, pp. 663-668, 2015.   DOI
8 M. R. R. Khan, B. H. Kang, S. H. Yeom, D. H. Kwon and S. W. Kang "Fiber-optic pulse width modulation sensor for low concentration VOC gas," Sens. Actuators B Chem., Vol. 188, pp. 689-696, 2013.   DOI
9 M. R. R. Khan, B. H. Kang, S. W. Lee, S. H. Kim, S. H. Yeom, S. H. Lee and S. W. Kang "Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds," Opt. Express, Vol. 21, No. 17, pp. 20119- 20130, 2013.   DOI
10 M. R. R. Khan and S. W. Kang, "A high sensitivity and wide dynamic range fiber-optic sensor for low-concentration VOC gas detection," Sensors, Vol. 14, No. 12, pp. 23321-23336, 2014.   DOI
11 A. Khalilian, M. R. R. Khan and S. W. Kang, "Highly sensitive and wide-dynamic-range side-polished fiber-optic taste sensor," Sens. Actuator B Chem., Vol. 249, pp. 700-707, 2017.   DOI
12 M. R. R. Khan, A. V. Watekar and S. W. Kang, "Fiber-optic biosensor to detect pH and glucose," IEEE Sens. J., Vol. 18, No. 4, pp. 1528-1538, 2018.   DOI
13 http://www.vivo.colostate.edu/hbooks/pathphys/digestion/pregastric/taste.html (retrieved on Jan. 8, 2018)
14 C. Apetrei, M. L. Rodriguez-Méndez, V. Parra, F. Gutierrez b and J. A. de Saja, "Array of voltammetric sensors for the discrimination of bitter solutions," Sens. Actuators B Chem., Vol. 103, No. 1-2, pp. 145-152, 2004.   DOI
15 K. Morozova, E. Aprea, C. Cantini, M. Migliorini, F. Gasperi and M. Scampicchio, "Determination of bitterness of extra virgin olive oils by amperometric detection," Electroanalysis, Vol. 28, No. 9, pp. 2196-2204, 2016.   DOI
16 Y. Tahara, A. Ikeda, Y. Maehara, M. Habara and K. Toko, "Development and evaluation of a miniaturized taste sensor chip," Sensors, Vol. 11, No. 10, pp. 9878-9886, 2011.   DOI
17 A. Halder, M. Mahato, T. Sinha, B. Adhikari, S. Mukherjee and N. Bhattacharyya, "Polymer membrane electrode based potentiometric taste sensor: A new sensor to distinguish five basic tastes," Proc. of Sixth International Conference on Sensing Technology, pp. 785-789, Kolkata, India, 2012.
18 H. W. Jung, Y. W. Chang, G. Y. Lee, S. Cho, M. J. Kang and J. C. Pyun, "A capacitive biosensor based on an interdigitated electrode with nanoislands," Anal. Chim. Acta, Vol. 844, pp. 27-34, 2014.   DOI
19 C. Sapsanis, H. Omran, V. Chernikova, O. Shekhah, Y. Belmabkhout, U. Buttner, M. Eddaoudi and K. N. Salama, "Insights on capacitive interdigitated electrodes coated with MOF thin films humidity and VOCs sensing as a case study," Sensors, Vol. 15, No. 8, pp. 18153-18166, 2015.   DOI
20 M. R. R. Khan, A. Khalilian and S. W. Kang, "Fast, highlysensitive, and wide-dynamic-range interdigitated capacitor glucose biosensor using solvatochromic dye-containing sensing membrane," Sensors, Vol. 16, No. 2, 2016.
21 M. R. R. Khan and S. W. Kang, "Highly sensitive multichannel IDC sensor array for low concentration taste detection," Sensors, Vol. 15, No. 6, pp. 13201-13221, 2015.   DOI