• 제목/요약/키워드: resolvent operator technique

검색결과 25건 처리시간 0.026초

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH GENERAL H-MONOTONE OPERATORS IN BANACH SPACES

  • Li, Jinsong;Wang, Wei;Cho, Min-Hyung;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.671-680
    • /
    • 2010
  • A system of nonlinear variational inclusions involving general H-monotone operators in Banach spaces is introduced. Using the resolvent operator technique, we suggest an iterative algorithm for finding approximate solutions to the system of nonlinear variational inclusions, and establish the existence of solutions and convergence of the iterative algorithm for the system of nonlinear variational inclusions.

SET-VALUED QUASI VARIATIONAL INCLUSIONS

  • Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.101-113
    • /
    • 2000
  • In this paper, we introduce and study a new class of variational inclusions, called the set-valued quasi variational inclusions. The resolvent operator technique is used to establish the equivalence between the set-valued variational inclusions and the fixed point problem. This equivalence is used to study the existence of a solution and to suggest a number of iterative algorithms for solving the set-valued variational inclusions. We also study the convergence criteria of these algorithms.

ON NONLINEAR VARIATIONAL INCLUSIONS WITH ($A,{\eta}$)-MONOTONE MAPPINGS

  • Hao, Yan
    • East Asian mathematical journal
    • /
    • 제25권2호
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, ${\eta}$)-monotone map-pings in the framework of Hilbert spaces. Based on the generalized resol-vent operator technique associated with (A, ${\eta}$)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, ${\eta}$)-monotonicity generalizes A-monotonicity and H-monotonicity, The results presented this paper improve and extend the corresponding results announced by many others.

ITERATIVE ALGORITHMS FOR A SYSTEM OF RANDOM NONLINEAR EQUATIONS WITH FUZZY MAPPINGS

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • 제34권3호
    • /
    • pp.265-285
    • /
    • 2018
  • The main purpose of this paper, by using the resolvent operator technique associated with randomly (A, ${\eta}$, m)-accretive operator is to establish an existence and convergence theorem for a class of system of random nonlinear equations with fuzzy mappings in Banach spaces. Our works are improvements and generalizations of the corresponding well-known results.

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuan-Zhi;Fang, Jin-Xuan
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.385-397
    • /
    • 2003
  • In this paper, we introduce and study a system of nonlinear implicit variational inclusions (SNIVI) in real Banach spaces: determine elements $x^{*},\;y^{*},\;z^{*}\;\in\;E$ such that ${\theta}\;{\in}\;{\alpha}T(y^{*})\;+\;g(x^{*})\;-\;g(y^{*})\;+\;A(g(x^{*}))\;\;\;for\;{\alpha}\;>\;0,\;{\theta}\;{\in}\;{\beta}T(z^{*})\;+\;g(y^{*})\;-\;g(z^{*})\;+\;A(g(y^{*}))\;\;\;for\;{\beta}\;>\;0,\;{\theta}\;{\in}\;{\gamma}T(x^{*})\;+\;g(z^{*})\;-\;g(x^{*})\;+\;A(g(z^{*}))\;\;\;for\;{\gamma}\;>\;0,$ where T, g : $E\;{\rightarrow}\;E,\;{\theta}$ is zero element in Banach space E, and A : $E\;{\rightarrow}\;{2^E}$ be m-accretive mapping. By using resolvent operator technique for n-secretive mapping in real Banach spaces, we construct some new iterative algorithms for solving this system of nonlinear implicit variational inclusions. The convergence of iterative algorithms be proved in q-uniformly smooth Banach spaces and in real Banach spaces, respectively.

A SYSTEM OF NONLINEAR SET-VALUED IMPLICIT VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuanzhi;Yang, Qing
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.129-137
    • /
    • 2010
  • In this paper, we introduce and study a system of nonlinear set-valued implicit variational inclusions (SNSIVI) with relaxed cocoercive mappings in real Banach spaces. By using resolvent operator technique for M-accretive mapping, we construct a new class of iterative algorithms for solving this class of system of set-valued implicit variational inclusions. The convergence of iterative algorithms is proved in q-uniformly smooth Banach spaces. Our results generalize and improve the corresponding results of recent works.

VISCOSITY METHODS OF APPROXIMATION FOR A COMMON SOLUTION OF A FINITE FAMILY OF ACCRETIVE OPERATORS

  • Chen, Jun-Min;Zhang, Li-Juan;Fan, Tie-Gang
    • East Asian mathematical journal
    • /
    • 제27권1호
    • /
    • pp.11-21
    • /
    • 2011
  • In this paper, we try to extend the viscosity approximation technique to find a particular common zero of a finite family of accretive mappings in a Banach space which is strictly convex reflexive and has a weakly sequentially continuous duality mapping. The explicit viscosity approximation scheme is proposed and its strong convergence to a solution of a variational inequality is proved.

ITERATING A SYSTEM OF SET-VALUED VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

  • Shafi, Sumeera
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권4호
    • /
    • pp.255-275
    • /
    • 2022
  • In this paper, we introduce a new system of set-valued variational inclusion problems in semi-inner product spaces. We use resolvent operator technique to propose an iterative algorithm for computing the approximate solution of the system of set-valued variational inclusion problems. The results presented in this paper generalize, improve and unify many previously known results in the literature.

INERTIAL PROXIMAL AND CONTRACTION METHODS FOR SOLVING MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS

  • Jacob Ashiwere Abuchu;Godwin Chidi Ugwunnadi;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.175-203
    • /
    • 2023
  • In this paper, we study an iterative algorithm that is based on inertial proximal and contraction methods embellished with relaxation technique, for finding common solution of monotone variational inclusion, and fixed point problems of pseudocontractive mapping in real Hilbert spaces. We establish a strong convergence result of the proposed iterative method based on prediction stepsize conditions, and under some standard assumptions on the algorithm parameters. Finally, some special cases of general problem are given as applications. Our results improve and generalized some well-known and related results in literature.

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH (A, $\eta$)-MONOTONE MAPPINGS IN HILBERT SPACES

  • Shang, Meijuan;Qin, Xiaolong
    • East Asian mathematical journal
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we introduce a system of nonlinear variational inclusions involving (A, $\eta$)-monotone mappings in the framework of Hilbert spaces. Based on the generalized resolvent operator technique associated with (A, $\eta$)-monotonicity, the approximation solvability of solutions using an iterative algorithm is investigated. Our results improve and extend the recent ones announced by many others.

  • PDF