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ITERATIVE ALGORITHMS FOR A SYSTEM OF RANDOM

NONLINEAR EQUATIONS WITH FUZZY MAPPINGS

Jong Kyu Kim and Salahuddin

Abstract. The main purpose of this paper, by using the resolvent op-

erator technique associated with randomly (A, η,m)-accretive operator is

to establish an existence and convergence theorem for a class of system of
random nonlinear equations with fuzzy mappings in Banach spaces. Our

works are improvements and generalizations of the corresponding well-

known results.

1. Introduction

The fuzzy sets theory introduced by Zadeh [34] is an extension of a crisp set
by enlarging the truth valued set {0, 1} to the real unit interval [0, 1]. A fuzzy
set characterized by and identified with a mapping called a membership grade
function from the whole set into [0, 1]. Heilpern [16] introduced the concepts of
fuzzy mappings and proved a fixed point theorem for fuzzy contraction map-
pings which is a fuzzy analogue of Nadler’s fixed point theorem for multi-valued
mappings.

In 1989, Chang and Zhu [6] first introduced and studied a class of varia-
tional inequalities for fuzzy mappings. Since then several classes of variational
inequalities, quasi variational inequalities and complementarity problems with
fuzzy mappings were considered by Agarwal et al. [1], Chang and Huang [8],
Dai [9], Ding [10], Ding et al. [11], Huang [13], Lee et al. [24], Salahuddin [28],
in the setting of Hilbert spaces and Banach spaces.

Lan et al. [23] introduced a new concepts of (A, η)-accretive mappings which
generalizes the (H, η)-accretive and A-accretive in Banach spaces and studied
some properties of (A, η)-accretive mappings and applied resolvent operators
associated with (A, η)-accretive mappings to approximate solution of a new class
of nonlinear (A, η)-accretive operator inclusion problems with relaxed cocoercive
operators in Banach spaces. Recently Kim et al. [19] introduced the (A, η,m)-
proximal operator to study the system of equations in Hilbert spaces.
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Recently some systems of variational inequalities, variational inclusions, com-
plementarity problems and equilibrium problems have been studied by some
authors in recent years because of their close relation to Nash equilibrium prob-
lems. Huang and Fang [14] introduced a system of order complementarity prob-
lems and established some existence results for these using fixed point theory.
Kim and Kim [21] introduced and studied some system of variational inequalities
and developed some iterative algorithms for approximate solutions of system of
variational inequalities.

On the other hand, random variational inequality problems, random quasi
variational inequality problems, random variational inclusions and complemen-
tarity problems have been studied by Chang [5], Chang and Huang [7], Huang
[13], Khan and Salahuddin [18], Tan [30], Yuan [33] and Bharucha-Reid [3], etc..

The concepts of random fuzzy mapping was first introduced by Huang [13].
Subsequently the random variational inclusion problems for random fuzzy map-
pings is studied by Anastassiou et al. [2] and Salahuddin [28].

Inspired and motivated by the works [2, 15, 17, 20, 26, 31]. In this paper,
we established the existence and convergence theorem for system of random
nonlinear equations with fuzzy mapping in Banach spaces by using randomly
(At, ηt,mt)-proximal operator equations.

2. Preliminaries

Throughout this paper (Ω,Σ) is a complete σ-finite measurable space, X is
a real separable Banach space with a norm ‖ · ‖ and dual pairing 〈·, ·〉 between
X and X∗. B(X), 2X and CB(X) denote the class of Borel σ fields in X, the
family of all nonempty subsets of X, the family of all nonempty closed bounded
subset of X, respectively.

The generalized dual mapping jq : X → 2X is defined by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1}, ∀x ∈ X

where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is known that Jq(x) = ‖x‖q−2J2(x) for all x 6= 0, Jq is single
valued if X∗ is strictly convex and if X = H, the Hilbert space, then J2 becomes
the identity mapping on H. The modulus of smoothness of X is the function
πX : [0,∞)→ [0,∞) defined by

πX(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖ − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space X is called uniformly smooth if

lim
t→0

πx(t)

t
= 0.

X is called q-uniformly smooth if there exists a constant c > 0 such that

πX(t) ≤ ctq, (q > 1).
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Definition 1. A mapping u : Ω → X is said to be measurable if for any
B ∈ B(X), u−1 = {t ∈ Ω, u(t) ∈ B ∈ Σ}.

Definition 2. A mapping f : Ω × X → X is called a random mapping if for
each fixed x ∈ X, a mapping f(·, x) : Ω→ X is measurable. A random mapping
f is said to be continuous if for each fixed t ∈ Ω, a mapping f(t, ·) : X → X is
continuous.

Definition 3. A multi-valued mapping T : Ω→ 2X is said to be measurable if
for any B ∈ B(X), T−1(B) = {t ∈ Ω : T (t) ∩B 6= ∅} ∈ Σ.

Definition 4. A mapping u : Ω → X is called a measurable selection of a
measurable multi-valued mapping T : Ω → 2X , if u is measurable and for any
t ∈ Ω, u(t) ∈ Tt(u(t)).

Definition 5. A mapping T : Ω × X → 2X is called a random multi-valued
mapping if for each fixed x ∈ X, T (·, x) : Ω→ 2X is a measurable multi-valued
mapping. A random multi-valued mapping T : Ω × X → CB(X) is said to
be D-continuous if for each fixed t ∈ Ω, T (t, ·) : Ω × X → 2X is randomly
continuous with respect to the Hausdorff metric on D.

Definition 6. A multi-valued mapping T : Ω × X → 2X is called a random
multi-valued mapping if for any x ∈ X,T (·, x) is measurable (denoted by Tt,x
or Tt).

Let Ω be a set and F(X) be a collection of fuzzy sets over X. A mapping
F : Ω×X → F(X) is called a fuzzy mapping on X. If F is a fuzzy mapping on
X then for any t ∈ Ω, F (t) (denote it by Ft in the sequel) is a fuzzy mapping
on X and Ft(x) is the membership-grade of x in Ft. Let A ∈ F(X), a ∈ (0, 1].
Then the set

Aa = {x ∈ X : A(x) ≥ a}
is called an a-cut of A.

Definition 7. A fuzzy mapping F : Ω ×X → F(X) is said to be measurable,
if for any a ∈ (0, 1], (F (·))a : Ω→ 2X is a measurable multi-valued mapping.

Definition 8. A fuzzy mapping F : Ω×X → F(X) is a random fuzzy mapping
if for any x ∈ X,F (·, x) : Ω × X → F(X) is a measurable fuzzy mapping
(denoted by Ft,x short down Ft(x)).

We give the condition (C) for the random fuzzy mapping T : Ω×X → F(X).

(C): There exists a function a : X → (0, 1] such that for all (t, x) ∈ Ω ×X,
we have

(Tt,x(t))a(x(t))
∈ CB(X),

where Tt,x denotes the value of T at (t, x).

Induced multi-valued random mapping T̃t from T is as follows:

T̃ : Ω×X → CB(X), Tt = (Tt,x(t))a(x(t))
, (t, x)→ (Tt,x(t))a(x(t))

,∀(t, x) ∈ Ω×X.
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In this paper, we consider the following randomly (At, ηt,mt)-proximal op-
erator equation system with fuzzy mappings, for each fixed t ∈ Ω finding
(x(t), y(t)), (z(t), w(t)) ∈ X1 ×X2, Tt,x(t)(u(t)) ≥ a(x(t)) and{

Et(x(t), y(t)) + ρ−1R
Mt(·,x(t))
ρ,A1,t

(z(t)) = 0,

Gt(u(t), y(t)) + %−1R
Nt(·,y(t))
%,A2,t

(w(t)) = 0,
(1)

where T : X1 × Ω → F(X1) is a fuzzy mapping, E : X1 × X2 × Ω → X1, G :
X1×X2×Ω→ X2, g : X1×Ω→ X1, h : X2×Ω→ X2, η1 : X1×X1×Ω→ X1 and
η2 : X2×X2×Ω→ X2 are nonlinear random single-valued mappings, A1 : X1×
Ω→ X1, A2 : X2×Ω→ X2,M : X1×X1×Ω→ 2X1 and N : X2×X2×Ω→ 2X2

are any nonlinear mappings such that for all (z(t), t) ∈ X1 × Ω,Mt(·, z(t)) :
X1 → 2X1 is a randomly (A1,t, η1,t,m1,t)-accretive mapping with ft(X1) ∩
dom(Mt(·, z(t))) 6= ∅ and for all (w(t), t) ∈ X2 ×Ω : Nt(·, w(t)) : X2 → 2X2 is a
randomly (A2,t, η2,t,m2,t)-accretive mapping with gt(X2)∩dom(Nt(·, w(t)) 6= ∅,
R
Mt(·,x(t))
ρt,A1,t

= I − A1,t

(
J
Mt(·,x(t))
ρt,A1,t

)
, R

Nt(·,y(t))
%t,A2,t

= I − A2,t

(
J
Nt(·,y(t))
%t,A2,t

)
, I is the

identity mapping, A1,t

(
J
Mt(·,x(t))
ρt,A1,t

(z(t))
)

= A1,t

(
J
Mt(·,x(t))
ρt,A1,t

)
(z(t)),

A2,t

(
J
Nt(·,y(t))
%t,A2,t

(w(t))
)

= A2,t

(
J
Nt(·,y(t))
%t,A2,t

)
(w(t)),

J
Mt(·,x(t))
ρt,A1,t

= (A1,t + ρtMt(·, x(t)))−1 and J
Nt(·,y(t))
%t,A2,t

= (A2,t + %tNt(·, y(t)))−1

for all (x(t), z(t)) ∈ X1, (y(t), w(t)) ∈ X2 and ρ, % : Ω → (0, 1) are measurable
mappings.

For appropriate and suitable choice of T,E,G,M,N, f, g, Ai, ηi and Xi for
i = 1, 2, we see that (1) is a generalized version of some problems which in-
cludes the system (random) variational inclusions, (random) generalized quasi-
variational inequalities and (random) implicit quasi-variational inequalities for
fuzzy mappings (see [20, 21]).

Lemma 2.1. [4] Let M : Ω ×X → CB(X) be a D-continuous random multi-
valued mapping. Then for a measurable mapping x : Ω → X, a multi-valued
mapping M(·, x(·)) : Ω→ CB(X) is measurable.

Lemma 2.2. [4] Let M,V : Ω→ CB(X) be two measurable multi-valued map-
pings and ε > 0 be a constant and x : Ω → X be a measurable selection of M .
Then there exists a measurable selection y : Ω→ X of V such that for all t ∈ Ω

‖x(t)− y(t)‖ ≤ (1 + ε)D(M(t), V (t)).

Lemma 2.3. [25] Let (X, d) be a complete metric space. Suppose that G : X →
CB(X) satisfies

D̃(G(x), G(y)) ≤ ωd(x, y),∀x, y ∈ X,
where ω ∈ (0, 1) is a constant. Then the mapping G has a fixed point in X.

Definition 9. Let x, y, w : Ω→ X be random mappings and t ∈ Ω. A random
mapping T : X ×X × Ω→ X is said to be
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(i) randomly accretive in the first argument of T if jq(x(t)−y(t)) ∈ Jq(x(t)−
y(t)) and

〈Tt(x(t), w(t))− Tt(y(t), w(t)), jq(x(t)− y(t))〉 ≥ 0,

for all x(t), y(t) ∈ X;
(ii) randomly rt-strongly accretive in the first argument of T if there exists

a measurable function rt : Ω→ (0,∞) such that

〈Tt(x(t), w(t))− Tt(y(t), w(t)), jq(x(t)− y(t))〉 ≥ rt‖x(t)− y(t)‖q,
for all x(t), y(t) ∈ X;

(iii) randomly mt-relaxed accretive in the first argument if there exists a
measurable function mt : Ω→ (0,∞) such that

〈Tt(x(t), w(t))− Tt(y(t), w(t)), jq(x(t)− y(t))〉 ≥ −mt‖x(t)− y(t)‖q,
for all x(t), y(t) ∈ X;

(iv) randomly st-cocoercive in the first argument of T if there exists a mea-
surable function st : Ω→ (0,∞) such that

〈Tt(x(t), w(t))− Tt(y(t), w(t)), jq(x(t)− y(t))〉
≥ st‖Tt(x(t), w(t))− Tt(y(t), w(t))‖q,

for all x(t), y(t), w(t) ∈ X;
(v) randomly γt-relaxed cocoercive with respect to At in the first argument

of T if there exists a measurable function γt → (0,∞) such that

〈Tt(x(t), w(t))− Tt(y(t), w(t)), jq(At(x(t))−At(y(t)))〉
≥ −γt‖Tt(x(t), w(t))− Tt(y(t), w(t))‖q,

for all x(t), y(t), w(t) ∈ X;
(vi) randomly (γt, αt)-relaxed cocoercive with respect to At in the first ar-

gument of T if there exists a measurable function γt, αt : Ω → (0,∞)
such that

〈Tt(x(t), w(t))− Tt(y(t), w(t)), jq(At(x(t))−At(y(t)))〉
≥ −γt‖Tt(x(t), w(t))− Tt(y(t), w(t))‖q + αt‖x(t)− y(t)‖q,

for all x(t), y(t), w(t) ∈ X;
(vii) randomly µt-Lipschitz continuous in the first argument if there exists a

measurable function µt : Ω→ (0,∞) such that

‖Tt(x(t), w(t))− Tt(y(t), w(t))‖ ≤ µt‖x(t)− y(t)‖,
for all x(t), y(t), w(t) ∈ X.

Definition 10. Let T : X×Ω→ 2X be a random multi-valued mapping. Then

T is said to be randomly τt-D̃-Lipschitz continuous in the first argument if there
exists a measurable mapping τ : Ω→ (0, 1) such that

D̃(Tt(x(t)), Tt(y(t))) ≤ τt‖x(t)− y(t)‖, ∀x(t), y(t) ∈ X, t ∈ Ω,
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where D̃ : 2X × 2X → (−∞,+∞) ∪ {+∞} is the Hausdorff metric, that is,

D̃(A,B)

= max

{
sup
x(t)∈A

inf
y(t)∈B

‖x(t)− y(t)‖, sup
x(t)∈B

inf
y(t)∈A

‖x(t)− y(t)‖

}
, ∀A,B ∈ 2X .

Lemma 2.4. Let (X, d) be a complete metric space and T1, T2 : X → CB(X) be
two set-valued contractive mappings with same contractive constant t ∈ (0, 1),
that is,

D̃(Ti(x), Ti(y)) ≤ td(x, y),∀x, y ∈ X, i = 1, 2.

Then

D̃(F (Ti), F (Ti)) ≤
1

1− t
sup
x∈H

D̃(T1(x), T2(x)),

where F (T1) and F (T2) are fixed point sets of T1 and T2, respectively.

Definition 11. Let A : X × Ω → X, η : X × X × Ω → X be two random
single-valued mappings. The set-valued mapping M : X ×X × Ω→ 2X is said
to be randomly (At, ηt,mt)-accretive if

(1) M is a randomly mt-relaxed ηt-accretive mapping;
(2) (At + ρtMt)(X) = X, where ρ : Ω→ (0, 1) is a measurable mapping.

Definition 12. Let A : Ω × X → X be a randomly rt-strongly ηt-accretive
mapping and M : Ω × X → 2X be a randomly (At, ηt)-accretive mapping.
Then random operator (At + ρtMt)

−1 is a single-valued random mapping for
any measurable mapping ρ : X → (0,∞).

Definition 13. Let A : Ω×X → X be a randomly strictly ηt-accretive mapping
and M : Ω×X → 2X be a randomly (At, ηt,mt)-accretive mapping. Then for
any given measurable mapping ρ : Ω → (0, 1), the random resolvent operator

Jηt,Mt

ρt,At
: X → X is defined by

Jηt,Mt

ρt,At
(x(t)) = (At + ρtMt)

−1(x(t)),∀t ∈ Ω, x(t) ∈ X.

Proposition 2.5. [22] Let X be a q-uniformly smooth Banach spaces and η :
Ω×X×X → X be a randomly τt-Lipschitz continuous mapping, A : Ω×X → X
be a randomly rt-strongly ηt-accretive mapping and M : Ω × X → 2X be a
randomly (At, ηt,mt)-accretive mapping. Then the random resolvent operator

Jηt,Mt

ρt,At
: X → X is a randomly

τq−1
t

rt−ρtmt -Lipschitz continuous, i.e.,

‖Jηt,Mt

ρt,At
(x(t))− Jηt,Mt

ρt,At
(y(t))‖ ≤ τ q−1

t

rt − ρtmt
‖x(t)− y(t)‖,

where ρt ∈ (0, rtmt ) is a real-valued random variable for all t ∈ Ω.
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In connection with randomly (At, ηt,mt)-proximal operator equation systems
(1), we consider the system of random nonlinear equations with fuzzy mappings
for finding measurable mappings x, u : Ω :→ X1, y : Ω → X2 such that for all
t ∈ Ω and each fixed Tt,x(t)(u(t)) ≥ a(x(t)) and{

0 ∈ Et(x(t), y(t)) +Mt(x(t), x(t)),

0 ∈ Gt(u(t), y(t)) +Nt(y(t), y(t)).
(2)

Lemma 2.6. For t ∈ Ω, x, u : Ω → X1 and y : Ω → X2, (x(t), y(t), u(t)) is a
solution of problem (2) if and only if x(t), u(t) ∈ X1, y(t) ∈ X2 such that{

x(t) = J
Mt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))],

y(t) = J
Nt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))],
(3)

where J
Mt(·,x(t))
ρt,A1,t

= (A1,t+ρtMt(·, x(t)))−1 and J
Nt(·,y(t))
%t,A2,t

= (A2,t+%tNt(·, y(t)))−1

are corresponding random resolvent operators in the first argument of a ran-
dom (A1,t, η1,t)-accretive mapping Mt(·, ·), random (A2,t, η2,t)-accretive map-
ping Nt(·, ·), respectively, Ai,t is randomly ri,t-strongly accretive mapping for
each i = 1, 2 and ρ, % : Ω→ (0, 1) are measurable mappings.

Proof. From the definition of the random resolvent operator J
Mt(·,x(t))
ρt,A1,t

= (A1,t+

ρtMt(·, x(t)))−1 ofMt(·, x(t)) and J
Nt(·,y(t))
%t,A2,t

= (A2,t+%tNt(·, y(t)))−1 ofNt(·, y(t)),

for each t ∈ Ω, respectively, we know that there exists t ∈ Ω, x(t) ∈ X1, y(t) ∈
X2, u(t) ∈ T̃t(x(t)) such that (3) holds if and only if{

A1,t(x(t))− ρtEt(x(t), y(t)) ∈ A1,t(x(t)) + ρtMt(x(t), x(t)),

A2,t(y(t))− %tGt(u(t), y(t)) ∈ A2,t(y(t)) + %tNt(y(t), y(t)),

that is, {
0 ∈ Et(x(t), y(t)) +Mt(x(t), x(t)),

0 ∈ Gt(u(t), y(t)) +Nt(y(t), y(t)),

where ρ, % : Ω→ (0, 1) are measurable mappings. �

Now we prove that problem (1) is equivalent to problem (3).

Lemma 2.7. For t ∈ Ω, problem (1) has a solution (x(t), y(t), u(t)) with u(t) ∈
T̃t(x(t)) if and only if problem (3) has a solution (x(t), y(t), u(t)) with u(t) ∈
T̃t(x(t)), where

x(t) = J
Mt(·,x(t))
ρt,A1,t

(z(t)), y(t) = J
Nt(·,y(t))
%t,A2,t

(w(t)) (4)

and {
z(t) = A1,t(x(t))− ρtEt(x(t), y(t)),

w(t) = A2,t(y(t))− %tG(u(t), y(t)),

where ρ, % : Ω→ (0, 1) are measurable mappings.
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Proof. Let x, u : Ω → X1 and y : Ω → X2 be measurable mappings, and
(x(t), y(t), u(t)) with u(t) ∈ T̃t(x(t)) be the solution of problem (3) for t ∈ Ω,.
Then by Lemma 2.6, it is a solution of the following system of random nonlinear
equations: {

x(t) = J
Mt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))],

y(t) = J
Nt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))].

By using the factR
Mt(·,x(t))
ρt,A1,t

= I−A1,t(J
Mt(·,x(t))
ρt,A1,t

), R
Nt(·,y(t))
%t,A2,t

= I−A2,t(J
Nt(·,y(t))
%t,A2,t

)

and (3), we have

R
Mt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(xt, y(t))]

= [A1,t(x(t))− ρtEt(x(t), y(t))]

−A1,t(J
Mt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))])

= A1,t(x(t))− ρtEt(x(t), y(t))−A1,t(x(t))

= −ρtEt(x(t), y(t))

and

R
Nt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))]

= A2,t(y(t))− %tGt(u(t), y(t))

−A2,t(J
Nt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))])

= A2,t(y(t))− %tGt(u(t), y(t))−A2,t(y(t))

= −%tGt(u(t), y(t)),

which imply that{
Et(x(t), y(t)) + ρ−1

t R
Mt(·,x(t))
ρt,A1,t

(z(t)) = 0,

Gt(u(t), y(t)) + %−1
t R

Nt(·,y(t))
%t,A2,t

(w(t)) = 0

with {
z(t) = A1,t(x(t))− ρtEt(x(t), y(t)),

w(t) = A2,t(y(t))− %tGt(u(t), y(t)),

that is, (z(t), w(t), x(t), y(t), u(t)) with ut ∈ T̃t(x(t)) is a solution of problem
(1) and ρ, % : Ω→ (0,∞) are measurable mappings.

Conversely, letting (z(t), w(t), x(t), y(t), u(t)) with u(t) ∈ T̃t(x(t)) is a solu-
tion of problem (1), then we have

ρtEt(x(t), y(t)) = −RMt(·,x(t))
ρt,A1,t

(z(t)), %tGt(u(t), y(t)) = −RNt(·,y(t))
%t,A2,t

(w(t)),

ρtEt(x(t), y(t)) = −RMt(·,x(t))
ρt,A1,t

(z(t)) = A1,t(J
Mt(·,x(t))
ρt,A1,t

(z(t)))− z(t),

%tGt(u(t), y(t)) = −RNt(·,y(t))
%t,A2,t

(w(t)) = A2,t(J
Nt(·,y(t))
%t,A2,t

(w(t)))− w(t). (5)
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It follows from (3) and (5) that

ρtEt(x(t), y(t)) = A1,t(J
Mt(·,x(t))
ρt,A1,t

(A1,t(x(t))− ρtEt(x(t), y(t))))

−A1,t(x(t)) + ρtEt(x(t), y(t))

and

%tGt(u(t), y(t)) = A2,t(J
Nt(·,y(t))
%t,A2,t

(A2,t(y(t))− %tGt(u(t), y(t))))

−A2,t(y(t)) + %tGt(u(t), y(t)),

which imply that{
A1,t(x(t)) = A1,t(J

Mt(·,x(t))
ρt,A1,t

(A1,t(x(t))− ρtEt(x(t), y(t)))),

A2,t(y(t)) = A2,t(J
Nt(·,y(t))
%t,A2,t

(A2,t(y(t))− %tGt(u(t), y(t)))),

and so {
x(t) = J

Mt(·,x(t))
ρt,A1,t

(A1,t(x(t))− ρtEt(x(t), y(t))),

y(t) = J
Nt(·,y(t))
%t,A2,t

(A2,t(y(t))− %tGt(u(t), y(t))),

that is, (x(t), y(t), u(t)) with u(t) ∈ T̃t(x(t)) is a solution of problem (2).

Alternative Proof.
Let

z(t) = A1,t(x(t))− ρtEt(x(t), y(t)), w(t) = A2,t(y(t))− %tGt(u(t), y(t)).

Then by (4) we have

x(t) = J
Mt(·,x(t))
ρt,A1,t

(z(t)), y(t) = J
Nt(·,y(t))
%t,A2,t

(w(t)),

z(t) = A1,t(J
Mt(·,x(t))
ρt,A1,t

(z(t)))− ρtEt(x(t), y(t)),

and

w(t) = A2,t(J
Nt(·,y(t))
%t,A2,t

(w(t)))− %tGt(u(t), y(t)).

Since {
A1,t(J

Mt(·,x(t))
ρt,A1,t

(z(t))) = A1,t(J
Mt(·,x(t))
ρt,A1,t

)(z(t)),

A2,t(J
Nt(·,y(t))
%t,A2,t

(w(t))) = A2,t(J
Nt(·,y(t))
%t,A2,t

)(w(t)),

we have {
Et(x(t), y(t)) + ρ−1

t R
Mt(·,x(t))
ρt,A1,t

(z(t)) = 0,

Gt(u(t), y(t)) + %−1
t R

Nt(·,y(t))
%t,A2,t

(w(t)) = 0,

where ρ, % : Ω→ (0, 1) are measurable mappings. �

Lemma 2.8. [32] Let X be a real uniformly smooth Banach space. Then X is
q-uniformly smooth if and only if there exists a constant cq > 0 such that for
all x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ cq‖y‖q.
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3. Main Results

In this section, we first discuss the existence theorem, after then we develop
an algorithm for the problem and prove the convergence of the random sequences
generated by given algorithm.

Theorem 3.1. Let (Ω,Σ) be a measurable space. Let Ai : Xi × Ω → Xi be a
randomly ri,t-strongly accretive and randomly si,t-Lipschitz continuous mapping
for each i = 1, 2, T : X1×Ω→ F(X1) be a fuzzy mapping induced by a set-valued

mapping T̃ : X1×Ω→ CB(X1), and a : X1 → (0, 1) and Tt,x(t)(x(t)) ≥ a(x(t))

satisfying the condition (C). Let T̃ : X1 × Ω → CB(X1) be the randomly

κt − D̃-Lipschitz continuous mapping, where D̃ is the Hausdorff pseudo metric
on 2Xi . Let M : X1 × X1 × Ω → 2X1 be a randomly (A1,t, η1,t)-accretive
mapping with measurable mapping m1 : Ω→ (0, 1) in the first variable and N :
X2×X2×Ω→ 2X2 be a randomly (A2,t, η2,t)-accretive mapping with measurable
mapping m2 : Ω → (0, 1) in the first variable. Let η1 : X1 ×X1 × Ω → X1 be
a randomly τ1,t-Lipschitz continuous mapping with measureτ1 : Ω → (0, 1),
η2 : X2 ×X2 × Ω → X2 be a randomly τ2,t-Lipschitz continuous mapping with
measure τ2 : Ω → (0, 1), E : X1 × X2 × Ω → X1 be the randomly Lipschitz
continuous mapping with respect to first variable with measurable mapping β :
Ω → (0, 1), and second argument with respect to measurable mapping ξ : Ω →
(0, 1) and randomly (γ1,t, α1,t)-relaxed cocoercive with respect to A1,t and first
variable of Et with measurable mappings γ1, α1 : Ω → (0, 1). Let G : X1 ×
X2 × Ω → X2 be the randomly Lipschitz continuous with respect to first and
second variables with measurable mappings µ, ζ : Ω → (0, 1), respectively. Let
G be a randomly (γ2,t, α2,t)-relaxed cocoercive mapping with respect to A2,t with
measurable mappings γ2, α2 : Ω → (0, 1), respectively. If in addition ρ : Ω →
(0,

r1,t
m1,t

) and % : Ω→ (0,
r2,t
m2,t

) are measurable mappings such that

τ q−1
1,t

q

√
sq1,t − qρt(−γ1,tβ

q
t + α1,ts

q
2,t) + cqρ

q
tβ

q
t

< (r1,t − ρtm1,t)

(
1− υ1,t −

τ q−1
2,t %tµtκt

r2,t − %tm2,t

)
,

τ q−1
2,t

q

√
sq2,t − q%t(−γ2,tζ

q
t + α2,ts

q
2,t) + cq%

q
t ζ
q
t (6)

< (r2,t − %tm2,t)

(
1− υ2,t −

τ q−1
1,t ρtξt

r1,t − ρtm1,t

)
,

‖JMt(·,x(t))
ρt,A1,t

(z(t))− JMt(·,y(t))
ρt,A1,t

(z(t))‖ ≤ υ1,t‖x(t)− y(t)‖, (7)

for all (x(t), y(t), z(t), t) ∈ X1 ×X1 ×X1 × Ω and

‖JNt(·,x(t))
%t,A2,t

(z(t))− JNt(·,y(t))
%t,A2,t

(z(t))‖ ≤ υ2,t‖x(t)− y(t)‖, (8)
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for all (x(t), y(t), z(t), t) ∈ X2 × X2 × X2 × Ω, where x, u : Ω → X1 and
y : Ω→ X2 are measurable mappings, then problem (1) has a random solution
(x∗(t), y∗(t), u∗(t)).

Proof. For given any measurable mappings ρ, % : Ω → (0, 1), we first define
random mappings Φρt : X1 ×X2 × Ω → X1 and Ψ%t : X1 ×X2 × Ω → X2 as
follows: {

Φρt(x(t), y(t)) = J
Mt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))],

Ψ%t(x(t), y(t)) = J
Nt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))],
(9)

where x, u : Ω → X1, y : Ω → X2, a : X1 → (0, 1) are random mappings and
Tt,x(t)(u(t)) ≥ a(x(t)).

Now we define a norm ‖·, ·‖1 on X1 ×X2 by

‖(x(t), y(t))‖1 = ‖x(t)‖+ ‖y(t)‖, ∀(x(t), y(t)) ∈ X1 ×X2, t ∈ Ω.

It is easy to see that (X1 × X2, ‖·, ·‖1) is a Banach space [12]. For any given
measurable mappings ρ, % : Ω → (0, 1), define Qρt,%t : X1 ×X2 × Ω → 2X1×X2

by

Qρt,%t(x(t), y(t)) =
{

(Φρt(x(t), y(t)),Ψ%t(x(t), y(t))) : u(t) ∈ T̃t(x(t))
}
,

for all (x(t), y(t)) ∈ X1 ×X2. For t ∈ Ω, (x(t), y(t)) ∈ X1 ×X2,

Tt,x(t)(u(t)) ≥ a(x(t)),

T̃t(x(t)) ∈ CB(X1), A1,t, A2,t, η1,t, η2,t, Et, Gt, J
Mt(·,x(t))
ρt,A1,t

, J
Nt(·,x(t))
%t,A2,t

are continu-

ous and measurable mappings, we have

Qρt,%t(x(t), y(t)) ∈ CB(X1 ×X2).

Now for each fixed t ∈ Ω, we prove that Qρt,%t(x(t), y(t)) is multi-valued
contractive mapping. In fact, for any t ∈ Ω, (x(t), y(t)) ∈ X1×X2 and (a1, a2) ∈
Qρt,%t(x(t), y(t)), there exists Tt,x(t)(u(t)) ≥ a(x(t)) with u(t) ∈ T̃t(x(t)) ∈
CB(X1) such that

a1 = J
Mt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))]

and

a2 = J
Nt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))].

Since Tt,x(t)(u(t)) ≥ a(x(t)) i .e., u(t) ∈ T̃t(x(t)) for any (x̄(t), ȳ(t)) ∈ X1 ×
X2, it follows from Nadler’s Theorem [26] that there exists Tt,x(t)(u(t)) ≥
a(x(t)), i .e., ū(t) ∈ T̃t(x̄(t)) such that

‖u(t)− ū(t)‖ ≤ (1 + ι)D̃(T̃t(x(t)), T̃t(x̄(t))). (10)

Letting (b1, b2) ∈ Qρt,%t(x̄(t), ȳ(t)), where

b1 = J
Mt(·,x̄(t))
ρt,A1,t

[A1,t(x̄(t))− ρtEt(x̄(t), ȳ(t))]
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and

b2 = J
Nt(·,ȳ(t))
%t,A2,t

[A2,t(ȳ(t))− %tGt(ū(t), ȳ(t))].

Then it follows from (7) and Proposition 2.5 that

‖a1 − b1‖

= ‖JMt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))]

− JMt(·,x̄(t))
ρt,A1,t

[A1,t(x̄(t))− ρtEt(x̄(t), ȳ(t))]‖

≤ ‖JMt(·,x(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))]

− JM(·,x̄(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))]‖

+ ‖JMt(·,x̄(t))
ρt,A1,t

[A1,t(x(t))− ρtEt(x(t), y(t))]

− JMt(·,x̄(t))
ρt,A1,t

[A1,t(x̄(t))− ρtE(x̄(t), ȳ(t))]‖
≤ υ1,t‖x(t)− x̄(t)‖

+
τ q−1
1,t

r1,t − ρtm1,t
‖A1,t(x(t))−A1,t(x̄(t))− ρt(Et(x(t), y(t))− Et(x̄(t), ȳ(t)))‖

≤ υ1,t‖x(t)− x̄(t)‖

+
τ q−1
1,t

r1,t − ρtm1,t
‖A1,t(x(t))−A1,t(x̄(t))− ρt(Et(x(t), y(t))− Et(x̄(t), y(t)))‖

+
τ q−1
1,t

r1,t − ρtm1,t
ρt‖Et(x̄(t), y(t))− Et(x̄(t), ȳ(t))‖, (11)

where ρt, τ1,t, r1,t,m1,t : Ω → (0, 1) are measurable mappings. By the assump-
tion of Et, A1,t,

‖Et(x̄(t), y(t))− Et(x̄(t), ȳ(t))‖ ≤ ξt‖y(t)− ȳ(t)‖ (12)

and

‖Et(x(t), y(t))− Et(x̄(t), y(t))‖ ≤ βt‖x(t)− x̄(t)‖, (13)

where βt, ξt : Ω → (0, 1) are measurable mappings. Since A1,t is randomly
s1,t-Lipschitz continuous and Et is randomly (γ1,t, α1,t)-relaxed cocoercive with
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respect to A1,t, from (13) and Lemma 2.8, we have

‖A1,t(x(t))−A1,t(x̄(t))− ρt(Et(x(t), y(t))− Et(x̄(t), y(t)))‖q

≤ ‖A1,t(x(t))−A1,t(x̄(t))‖q

− qρt〈Et(x(t), y(t))− Et(x̄(t), y(t)), jq(A1,t(x(t))−A1,t(x̄(t)))〉
+ cqρ

q
t‖Et(x(t), y(t))− Et(x̄(t), y(t))‖q

≤ sq1,t‖x(t)− x̄(t)‖q

− qρt(−γ1,t‖Et(x(t), y(t))− Et(x̄(t), y(t))‖q + α1,t‖A1,t(x(t))−A1,t(x̄(t))‖q)
+ cqρ

q
tβ

q
t ‖x(t)− x̄(t)‖q

≤ sq1,t‖x(t)− x̄(t)‖q

− qρt(−γ1,tβ
q
t ‖x(t)− x̄(t)‖q + α1,ts

q
1,t‖x(t)− x̄(t)‖q) + cqρ

q
tβ

q
t ‖x(t)− x̄(t)‖q

≤
[
sq1,t − qρt(−γ1,tβ

q
t + α1,ts

q
1,t) + cqρ

q
tβ

q
t

]
‖x(t)− x̄(t)‖q.

Hence, we have

‖A1,t(x(t))−A1,t(x̄(t))− ρt((Et(x(t), y(t))− Et(x̄(t), y(t))))‖

≤ q

√
sq1,t − qρt(−γ1,tβ

q
t + α1,ts

q
1,t) + cqρ

q
tβ

q,
t ‖x(t)− x̄(t)‖. (14)

Combining (11)-(14), we have

‖a1 − b1‖ ≤ ϑ1,t‖y(t)− ȳ(t)‖+ θ1,t‖x(t)− x̄(t)‖, (15)

where

θ1,t = υ1,t +
τ q−1
1,t

r1,t − ρtm1,t

q

√
sq1,t − qρt(−γ1,tβ

q
t + α1,ts

q
1,t) + cqρ

q
tβ

q
t ,

ϑ1,t =
τ q−1
1,t ρtξt

r1,t − ρtm1,t
.

Since Gt is randomly µt-Lipschitz continuous for first variable with measurable
mapping µ : Ω → (0, 1) and randomly ζt-Lipschitz continuous for second vari-

able with measurable mapping ζ : Ω→ (0, 1) and T̃ is randomly κt−D̃-Lipschitz
continuous with measurable mapping κ : Ω→ (0, 1), we have

‖Gt(u(t), y(t))−Gt(u(t), ȳ(t))‖ ≤ ζt‖y(t)− ȳ(t)‖ (16)

and

‖Gt(u(t), y(t))−Gt(ū(t), y(t))‖ ≤ µt‖u(t)− ū(t)‖

≤ µt(1 + ι)D̃(T̃t(x(t)), T̃t(x̄(t)))

≤ µtκt(1 + ι)‖x(t)− x̄(t)‖. (17)
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Similarly, by the assumptions of A2,t, Gt, T̃t and (16), we have

‖a2 − b2‖

= ‖JNt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))]

− JNt(·,ȳ(t))
%t,A2,t

[A2,t(ȳ(t))− %tGt(ū(t), ȳ(t))]‖

≤ ‖JNt(·,y(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))]

− JNt(·,ȳ(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))]‖

+ ‖JNt(·,ȳ(t))
%t,A2,t

[A2,t(y(t))− %tGt(u(t), y(t))]

− JNt(·,ȳ(t))
%t,A2,t

[A2,t(ȳ(t))− %tGt(ū(t), ȳ(t))]‖
≤ υ2,t‖y(t)− ȳ(t)‖

+
τ q−1
2,t

r2,t − %tm2,t
‖A2,t(y(t))−A2,t(ȳ(t))− %t(Gt(u(t), y(t))−Gt(ū(t), ȳ(t)))‖

≤ υ2,t‖y(t)− ȳ(t)‖

+
τ q−1
2,t

r2,t − %tm2,t
‖A2,t(y(t))−A2,t(ȳ(t))− %t(Gt(u(t), y(t))−Gt(u(t), ȳ(t)))‖

+
τ q−1
2,t

r2,t − %tm2,t
%t‖Gt(u(t), ȳ(t))−Gt(ū(t), ȳ(t))‖. (18)

SinceA2,t is randomly s2,t-Lipschitz continuous andGt is randomly (γ2,t, α2,t)-
relaxed cocoercive with respect to A2,t, from (16) and Lemma 2.8, we have

‖A2,t(y(t))−A2,t(ȳ(t))− %t(Gt(u(t), y(t))−Gt(u(t), ȳ(t)))‖q

≤ ‖A2,t(y(t))−A2,t(ȳ(t))‖q

− q%t〈Gt(u(t), y(t))−Gt(u(t), ȳ(t)), jq(A2,t(y(t))−A2,t(ȳ(t)))〉
+ cq%

q
t‖A2,t(y(t))−A2,t(ȳ(t))‖q

≤ ‖A2,t(y(t))−A2,t(ȳ(t))‖q − q%t(−γ2,t‖Gt(u(t), y(t))−Gt(u(t), ȳ(t))‖q

+ α2,t‖A2,t(y(t))−A2,t(ȳ(t))‖q) + cq%
q
t‖Gt(u(t), y(t))−Gt(u(t), ȳ(t))‖q

≤ sq2,t‖y(t)− ȳ(t)‖q − q%t(−γ2,tζ
q
t ‖y(t)− ȳ(t)‖q + α2,ts

q
2,t‖y(t)− ȳ(t)‖q)

+ cq%
q
t ζ
q
t ‖y(t)− ȳ(t)‖q

≤ (sq2,t − q%t(−γ2,tζ
q
t + α2,ts

q
2,t) + cq%

q
t ζ
q
t )‖y(t)− ȳ(t)‖q.

Hence, we have

‖A2,t(y(t))−A2,t(ȳ(t))− %t(Gt(u(t), y(t))−Gt(u(t), ȳ(t)))‖

≤ q

√
sq2,t − q%t(−γ2,tζ

q
t + α2,ts

q
2,t) + cq%

q
t ζ
q
t ‖y(t)− ȳ(t)‖. (19)
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Combining (18) and (19), we have

‖a2 − b2‖ ≤ θ2,t(ι)‖x(t)− x̄(t)‖+ ϑ2,t‖y(t)− ȳ(t)‖, (20)

where

ϑ2,t = υ2,t +
τ q−1
2,t

r2,t − %tm2,t

q

√
sq2,t − q%t(−γ2,tζ

q
t + α2,ts

q
2,t) + cq%

q
t ζ
q
t ,

θ2,t =
τ q−1
2,t %tµtκt(1 + ι)

r2,t − %tm2,t
.

It follows from (15) and (20) that

‖a1 − b1‖+ ‖a2 − b2‖ ≤ (θ1,t + θ2,t(1 + ι))‖x(t)− x̄(t)‖
+ (ϑ1,t + ϑ2,t)‖y(t)− ȳ(t)‖

≤ θt(ι)(‖x(t)− x̄(t)‖+ ‖y(t)− ȳ(t)‖), (21)

where

θt(ι) = max{θ1,t + θ2,t(ι), ϑ1,t + ϑ2,t}.
It follows from condition (6) that θt < 1. Hence from (21), we get

d((a1, a2), Qρt,%t(x̄(t), ȳ(t))) = inf
(b1,b2)∈Qρt,%t (x̄(t),ȳ(t))

(
‖a1 − b1‖+ ‖a2 − b2‖

)
≤ −θ(ι)‖(x(t), y(t))− (x̄(t), ȳ(t))‖.

Since (a1, a2) ∈ Qρt,%t(x(t), y(t)) is arbitrary, we obtain

sup
(a1,a2)∈Qρt,%t (x(t),y(t))

d((a1, a2), Qρt,%t(x̄(t), ȳ(t)))

≤ −θt(ι)‖(x(t), y(t))− (x̄(t), ȳ(t))‖.

By the same argument, we can prove

sup
(b1,b2)∈Qρt,%t (x̄(t),ȳ(t))

d((b1, b2), Gρt,%t(x(t), y(t)))

≤ −θt(ι)‖(x(t), y(t))− (x̄(t), ȳ(t))‖.

It follows from the definition of Hausdorff metric D̃ on CB(X1 ×X2) that

D̃(Qρt,%t(x(t), y(t)), Qρt,%t(x̄(t), ȳ(t))) ≤ −θt(ι)‖(x(t), y(t))− (x̄(t), ȳ(t))‖

for all (x(t), x̄(t)) ∈ X1 ×X1, (y(t), ȳ(t)) ∈ X2 ×X2, t ∈ Ω. Letting ι → 0, we
get

D̃(Qρt,%t(x(t), y(t)), Qρt,%t(x̄(t), ȳ(t))) ≤ −θt‖(x(t), y(t))− (x̄(t), ȳ(t))‖,

for all (x(t), x̄(t)) ∈ X1×X1, (y(t), ȳ(t)) ∈ X2×X2, t ∈ Ω, where ϑ2,t : Ω→ (0, 1)
is measurable and

θt = max{θ1,t + θ2,t, ϑ1,t + ϑ2,t},
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θ1,t = υ1,t +
τ q−1
1,t

r1,t − ρtm1,t

q

√
sq1,t − qρt(−γ1,tβ

q
t + α1,ts

q
t ) + cqρ

q
tβ

q
t ,

ϑ1,t =
τ q−1
1,t ρtξt

r1,t − ρtm1,t
,

ϑ2,t = υ2,t +
τ q−1
2,t

r2,t − %tm2,t

q

√
sq2,t − q%t(−γ2,tζ

q
t + α2,ts

q
2,t) + cq%

q
t ζ
q
t ,

θ2,t =
τ q−1
2,t %tµtκt

r2,t − %tm2,t
.

Let x(t), x̄(t) : Ω→ X1 be measurable mappings, y(t), ȳ(t) : Ω→ X2 be also
measurable mappings and Qρt,%t(x(t), y(t)) be a randomly multi-valued contrac-
tive mapping. By the fixed point Theorem of Nadler [26], Qρt,%t(x(t), y(t)) has
a fixed point (x(t), y(t)) ∈ X1 ×X2 i.e., (x(t), y(t)) ∈ Qρt,%t(x(t), y(t)). By the

definition of Qρt,%t , we know that there exists u(t) ∈ T̃t(x(t)), Tt,x(t)(u(t)) ≥
a(x(t)) such that (2) holds. Thus it follows from Lemma 2.6 that there ex-
ist measurable mappings x∗(t) : Ω → X1 and y∗(t) : Ω → X2 such that

(x∗(t), y∗(t), u∗(t)) with u∗(t) ∈ T̃t(x(t)) is a solution of problem (1). �

4. Iterative Algorithms and Convergence Analysis

In this section, based on Lemma 2.6 and Nadler [26], we shall construct a new
class of iterative algorithms for solving problems (1) and discuss the convergence
analysis of the algorithms.

Algorithm 1. Assume that Xi, Ai, ηi,M,N,E,G, T, T̃ are same as in problem
(1) for i = 1, 2 and x0 : Ω → X1, y0 : Ω → X2, u0 : Ω → 2X1 are measurable
mappings. For a : X2 → (0, 1) and the random element (x(t), y(t), u(t)) ∈
X1×X2×X1, we define the random iterative sequences {xn(t)}, {yn(t)}, {un(t)}
by



xn+1(t) = (1− λn(t))xn(t)

+λn(t)
[
J
Mt(·,xn(t))
ρt,A1,t

(A1,t(xn(t))− ρtEt(xn(t), yn(t)))
]

+ pn(t),

yn+1(t) = (1− λn(t))yn(t)

+λn(t)
[
J
Nt(·,yn(t))
%t,A2,t

(A2,t(yn(t))− %tGt(un(t), yn(t)))
]

+ qn(t),

u(t) ∈ T̃t(x(t)), Tt,x(t)(un(t)) ≥ a(xn(t)),

‖un(t) −u(t)‖ ≤ (1 + ι)D̃(T̃t(xn(t)), T̃t(x(t))),

(22)
where ρ, % : Ω → (0, 1) are measurable mappings, {λn(t)} is a measurable
sequences in (0, 1], and pn(t), qn(t) are two random errors sequences satisfying
the same conditions 4.2 in X1 and X2, respectively.
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Lemma 4.1. [27] Let {an}, {bn} and {cn} be three real sequences of nonnegative
numbers satisfying the following conditions:

(i) 0 ≤ bn < 1, n = 0, 1, 2, · · · and lim supn bn < 1;
(ii) Σ∞n=0cn < +∞;
(ii) an+1 ≤ bnan + cn, n = 0, 1, 2, · · · .

Then, we have limn→∞ an = 0.

Theorem 4.2. Let X1, X2, Tt, T̃t, η1,t, η2,t, A1,t, A2,t,Mt, Nt, Et, Gt be the same
as in Theorem 3.1. Assume that all the conditions of Theorem 3.1 hold and

lim sup
n
λn(t) < 1, Σ∞n=0 (‖pn(t)‖+ ‖qn(t)‖) < +∞. (23)

Then the random iterative sequences (xn(t), yn(t), un(t)) with un(t) ∈ T̃t(x(t))
defined by random Algorithm 1 converges strongly to the random solution
(x∗(t), y∗(t), u∗(t)) with u∗ ∈ T̃t(x∗(t)) of (1).

Proof. From Theorem 3.1, problem (1) admits a random solution

(x∗n(t), y∗n(t), u∗n(t)) with u∗ ∈ T̃t(x∗(t)). It follows from Lemma 2.6 that

x
∗(t) = (1− λn(t))x∗(t) + λn(t)

[
J
Mt(·,x∗(t))
ρt,A1,t

(A1,t(x
∗(t))− ρtEt(x∗(t), y∗(t)))

]
,

y∗(t) = (1− λn(t))y∗(t) + λn(t)
[
J
Nt(·,y∗(t))
%t,A2,t

(A2,t(y
∗(t))− %tGt(u∗(t), y∗(t)))

]
.

(24)
It follows from (22) and (24) and the assumptions that

‖xn+1(t)− x∗(t)‖
= (1− λn(t))‖xn(t)− x∗(t)‖

+ λn(t)‖JMt(·,xn(t))
ρt,A1,t

(A1,t(xn(t))− ρtEt(xn(t), yn(t)))

− JMt(·,x∗(t))
ρt,A1,t

(A1,t(x
∗(t))− ρtEt(x∗(t), y∗(t)))‖+ ‖pn(t)‖

≤ (1− λn(t))‖xn(t)− x∗(t)‖

+ λn(t)‖JMt(·,xn(t))
ρt,A1,t

(A1,t(xn(t))− ρtEt(xn(t), yn(t)))

− JMt(·,xn(t))
ρt,A1,t

(A1,t(x
∗(t))− ρtEt(x∗(t), y∗(t)))‖+ ‖pn(t)‖

+ λn(t)‖JMt(·,xn(t))
ρt,A1,t

(A1,t(x
∗(t))− ρtEt(x∗(t), y∗(t)))

− JMt(·,x∗(t))
ρt,A1,t

(A1,t(x
∗(t))− ρtEt(x∗(t), y∗(t)))‖
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≤ (1− λn(t))‖xn(t)− x∗(t)‖+ λn(t)υ1,t‖xn(t)− x∗(t)‖

+ λn(t)
τ q−1
1,t ρt

r1,t − ρtm1,t
‖Et(x∗(t), yn(t))− Et(x∗(t), y∗(t)))‖+ ‖pn(t)‖

+ λn(t)
τ q−1
1,t

r1,t − ρtm1,t

× ‖A1,t(xn(t))−A1,t(x
∗(t))− ρt(Et(xn(t), yn(t))− Et(x∗(t), yn(t)))‖

≤ (1− λn(t))‖xn(t)− x∗(t)‖+ λn(t)υ1,t‖xn(t)− x∗(t)‖

+ λn(t)
τ q−1
1,t ρtξt

r1,t − ρtm1,t
‖yn(t)− y∗(t)‖+ ‖pn(t)‖

+ λn(t)
τ q−1
1,t

r1,t − ρtm1,t

q

√
sq1,tqρt(−γ1,tβ

q
t + α1,ts

q
1,t) + cqρ

q
tβ

q
t ‖xn(t)− x∗(t)‖

≤ (1− λn(t))‖xn(t)− x∗(t)‖+ λn(t)θ1,t‖xn(t)− x∗(t)‖

+λn(t)ϑ1,t‖yn(t)− y∗(t)‖ + ‖pn(t)‖, (25)

where

θ1,t = υ1,t +
τ q−1
1,t

r1,t − ρtm1,t

q

√
sq1,t − qρt(−γ1,tβ

q
t + α1,ts

q
1,t) + cqρ

q
tβ

q
t ,

ϑ1,t =
τ q−1
1,t ρtξt

r1,t − ρtm1,t
.

Similarly, we have

‖yn+1(t)− y∗(t)‖
= (1− λn(t))‖yn(t)− y∗(t)‖

+ λn(t)‖JNt(·,yn(t))
%t,A2,t

(A2,t(yn(t))− %tGt(un(t), yn(t)))

− JNt(·,y
∗(t))

%t,A2,t
(A2,t(y

∗(t))− %tGt(u∗(t), y∗(t)))‖+ ‖qn(t)‖
≤ (1− λn(t))‖yn(t)− y∗(t)‖

+ λn(t)‖JNt(·,yn(t))
%t,A2,t

(A2,t(yn(t))− %tGt(un(t), yn(t)))

− JNt(·,yn(t))
%t,A2,t

(A2,t(y
∗(t))− %tGt(u∗(t), y∗(t)))‖+ ‖qn(t)‖

+ λn(t)‖JNt(·,yn(t))
%t,A2,t

(A2,t(y
∗(t))− %tGt(u∗(t), y∗(t)))

− JNt(·,y
∗(t))

%t,A2,t
(A2,t(y

∗(t))− %tGt(u∗(t), y∗(t)))‖
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≤ (1− λn(t))‖yn(t)− y∗(t)‖+ λn(t)υ2,t‖yn(t)− y∗(t)‖

+ λn(t)
τ q−1
2,t %t

r2,t − %tm2,t
‖Gt(un(t), y∗(t))−Gt(u∗(t), y∗(t)))‖+ ‖qn(t)‖

+ λn(t)
τ q−1
2,t

r2,t − %tm2,t

× ‖A2,t(yn(t))−A2,t(y
∗(t))− %t(Gt(un(t), yn(t)))−Gt(un(t), y∗(t)))‖

≤ (1− λn(t))‖yn(t)− y∗(t)‖+ λn(t)υ2,t‖yn(t)− y∗(t)‖

+ λn(t)
τ q−1
2,t %tµt

r2,t − %tm2,t
‖xn(t)− x∗(t)‖+ ‖qn(t)‖

+ λn(t)
τ q−1
2,t

r2,t − %tm2,t

q

√
sq2,t − q%t(−γ2,tζ

q
t + α2,ts

q
2,t) + cq%

q
t ζ
q
t ‖yn(t)− y∗(t)‖

≤ (1− λn(t))‖yn(t)− y∗(t)‖+ λn(t)θ2,t(1 + ι)‖xn(t)− x∗(t)‖

+λn(t)ϑ2,t‖yn(t)− y∗(t)‖+ ‖qn(t)‖, (26)

where

θ2,t =
τ q−1
2,t %tµtκt(1 + ι)

r1,t − ρtm1,t
,

ϑ2,t = υ2,t +
τ q−1
2,t

r2,t − %tm2,t

q

√
sq2,t − q%t(−γ2,tζ

q
t + α2,ts

q
2,t) + cq%

q
t ζ
q
t .

From (25) and (26) we have

‖xn+1(t)− x∗(t)‖+ ‖yn+1(t)− y∗(t)‖
≤ (1− λn(t) + λn(t)θt(ι)) (‖xn(t)− x∗(t)‖+ ‖yn(t)− y∗(t)‖)

+ (‖pn(t)‖+ ‖qn(t)‖) , (27)

where θt(ι) is the same as in (21). Let ι→ 0 and

an = ‖xn(t)−x∗(t)‖+‖yn(t)−y∗(t)‖, bn = 1−λn(t)(1−θt), cn = ‖pn(t)‖+‖qn(t)‖

where θt is the same as in (21). Then (27) can be rewritten as

an+1 ≤ bnan + cn, n = 0, 1, 2, · · · .

From (23) we know that the lim supn bn < 1 and
∑∞
n=0 cn < +∞. It follows

from Lemma 4.1 that

‖xn(t)− x∗(t)‖+ ‖yn(t)− y∗(t)‖ → 0 as n→∞.

Therefore (xn(t), yn(t), un(t)) with un(t) ∈ T̃t(x(t)), t ∈ Ω defined by Algorithm
1 converges strongly to the random solution (x∗(t), y∗(t), u∗(t)) with u∗(t) ∈
T̃t(x(t)) and Tt,x(t)(u(t)) ≥ a(x(t)). This completes the proof. �
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