Learning effect is an observation that the more times a task is performed, the less time is required to produce the same amount of outcomes. The construction industry heavily relies on repeated tasks where the learning effect is an important measure to be used. However, most construction durations are calculated and applied in real projects without considering the learning effects in each of the repeated activities. This paper applied the learning effect to the repeated activities in a small sized apartment construction project. The result showed that there was about 10 percent of difference in duration (one approach of the total duration with learning effects in 41 days while the other without learning effect in 36.5 days). To make the comparison between the two approaches, a large number of BIM based computer simulations were generated and useful patterns were recognized using machine learning algorithm named Decision Tree (See5). Machine learning is a data-driven approach for pattern recognition based on observational evidence.
In the present study, we apply the multiple cue probability learning (MCPL) paradigm to examine consumer learning from feedback in repeated trials. This paradigm is useful in investigating consumer learning, especially learning the relationships between the overall quality and attributes. With this paradigm, we can analyze what people learn from repeated trials by using the lens model, i.e., whether it is knowledge or consistency. In addition to introducing this paradigm, we aim to demonstrate that knowledge people gain from repeated trials with feedback is robust enough to weaken one of the most often examined contextual effects, the asymmetric dominance effect. The experiment consists of learning session and a choice task and stimuli are sport rafting boats with motor engines. During the learning session, the participants are shown an option with three attributes and are asked to evaluate its overall quality and type in a number between 0 and 100. Then an expert's evaluation, a number between 0 and 100, is provided as feedback. This trial is repeated fifteen times with different sets of attributes, which comprises one learning session. Depending on the conditions, the participants do one (low) or three (high) learning sessions or do not go through any learning session (no learning). After learning session, the participants then are provided with either a core or an extended choice set to make a choice to examine if learning from feedback would weaken the asymmetric dominance effect. The experiment uses a between-subjects experimental design (2 × 3; core set vs. extended set; no vs. low vs. high learning). The results show that the participants evaluate the overall qualities more accurately with learning. They learn the true trade-off rule between attributes (increase in knowledge) and become more consistent in their evaluations. Regarding the choice task, there is a significant decrease in the percentage of choosing the target option in the extended sets with learning, which clearly demonstrates that learning decreases the magnitude of the asymmetric dominance effect. However, these results are significant only when no learning condition is compared either to low or high learning condition. There is no significant result between low and high learning conditions, which may be due to fatigue or reflect the characteristics of learning curve. The present study introduces the MCPL paradigm in examining consumer learning and demonstrates that learning from feedback increases both knowledge and consistency and weakens the asymmetric dominance effect. The latter result may suggest that the previous demonstrations of the asymmetric dominance effect are somewhat exaggerated. In a single choice setting, people do not have enough information or experience about the stimuli, which may lead them to depend mostly on the contextual structure among options. In the future, more realistic stimuli and real experts' judgments can be used to increase the external validity of study results. In addition, consumers often learn through repeated choices in real consumer settings. Therefore, what consumers learn from feedback in repeated choices would be an interesting topic to investigate.
Journal of the Korean Society of Industry Convergence
/
v.18
no.1
/
pp.45-52
/
2015
In this paper, the repeated learning technique of neural network was used for gripping force control algorithm. The hybrid control system was introduced and the manipulator's finger reorganized form 2 ea to 3 ea for comfortable gripping. The data was obtained using the gripping force of repeated learning techniques. In the fucture, the adjustable gripping force will be obtained and improved the accuracy using the artificial intelligence techniques.
Journal of Dental Rehabilitation and Applied Science
/
v.33
no.2
/
pp.88-96
/
2017
Purpose: The purpose of this study is to assess the relationship between the time spent designing custom abutments and repeated learning using dental implant computer aided design (CAD) software. Materials and Methods: The design of customized abutments was performed four stages using the 3DS CAD software and the EXO CAD software, and measured repeatedly three times by each stage. Learning effect by repetition was presented with the learning curve, and the significance of the reduction in the total time and the time at each stage spent on designing was evaluated using the Friedman test and the Wilcoxon signed rank test. The difference in the design time between groups was analyzed using the repeated measure two-way ANOVA. Statistical analysis was performed using the SPSS statistics software (P < 0.05). Results: Repeated learning of the customized abutment design displayed a significant difference according to the number of repetition and the stage (P < 0.001). The difference in the time spent designing was found to be significant (P < 0.001), and that between the CAD software programs was also significant (P = 0.006). Conclusion: Repeated learning of CAD software shortened the time spent designing. While less design time on average was spent with the 3DS CAD than with the EXO CAD, the EXO CAD showed better results in terms of learning rate according to learning effect.
This study aimed to investigate how the learners' mathematics learning processes change with repeatedly reading mathematical text. As a way to teach and learn mathematics, we also wanted to examine the effect of repeated reading and to explore the implications for a more efficient teaching and learning strategy. To help us with this study, we mainly used eye tracking and heart rate (HR) measurement. There were four cycles in a cycle of repeated reading, and the number of repeated readings for all cycles was fixed to three times. Eight prospective mathematics teachers in the Department of Mathematics Education of a National University in South Korea participated. Data were analyzed in five aspects: (1) the total reading time per round, the total reading time per slide; (2) the change trends of total reading time per round and slide; (3) the order of slides read; (4) the change trends of HR per round. We found that most participants read in a similar pattern in the first reading, but the second and third reading patterns appeared more diverse for each learner. Also, the first reading required the most time regardless of the repeat cycle, and the time it took to repeatedly read afterward varied depending on the individual. Based on the findings of this study, the most primary conclusion is that self-directed mathematics learning by using repeated reading is effective regardless of cycle. In addition, we suggested four strategies to improve the efficiency of this teaching and learning method.
Usually, robot manipulators in production lines are operated with reperting work trajectories. This paper presents the repeated adaptive learning algorithm for robot manipulates for the case of a trajectory. This algorithm uses the nonlinear dynamic model including the repeated friction compensating term, The advantage of the scheme is that It allows friction compensation which may be otherwise difficult for differently constructed models. A secondary advantage of the sheme is that it can also adapt to torque calculation in order to reduce the computational load of the control computer. To show the efficiency of the proposed controller, a computer simulation is performed for the planar robot manipulator with a 2 degree of freedom.
The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.
The iterative learning control synthesized in the frequency domain has been utilized for temperature control of a batch reactor. For this purpose, a feedback-assisted generalized learning control scheme was constructed first, and the convergence and robustness analyses were conducted in the frequency domain. The feedback-assisted learning operation was then implemented in a bench scale batch reactor where reaction heat is simulated using an electric heater. As a result, progressive reduction of temperature control error could be obviously observed as batch operation is repeated.
This study was performed to investigate the effect of red ginseng extract including some vitamin B groups as test drug on learning and memory in mice. Single and repeated administrations of the test drug improved the acquisition and the process of consolidation in the tests using step-through and step-down apparatus, indicating this test drug improved learning and memory. However, the test drug did not improve scopolamine-induced amnesia. These results suggest that test drug may be useful as a nootropic agent.
We need the customized e-Learning service according to not only developing the wireless mobile and hardware technology, also developing the multimedia process skills. Especially, the beginner who start to learn the first programming course must be provided the personalized learning. The beginner require the repeated practices to obtain the programming skills, also they reveal the different learning effects following the learner capability In this paper. we develop a new e-Learning contents which give the individual service for learner and show the simulation which is program execution to maximize the learning effects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.