• Title/Summary/Keyword: repairable failure,

Search Result 80, Processing Time 0.022 seconds

Cost Optimization of Ineffective Periodic Preventive Maintenance

  • Jung, Gi-Mun;Park, Dong-Ho;Yum, Joon-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • This paper considers an imperfect repair model for which the repairable system is maintained preventively at periodic times and is replaced by a new system when a predetermined number of preventive maintenance has been applied. our main objective of this is to determine the optimal number of preventive maintenances before the system is replaced and the optimal length of interval between two consecutive preventive maintenances under a new repair model which is referred to as an ineffective preventive maintenance. Such a model assumes a periodic preventive maintenance in which the system is effectively maintained with a certain probability. Otherwise the system is not improved at all after each maintenance and thus the failure rate remains the same as before. The criteria to determine the optimal number of preventive maintenances and length of period is the expected cost rate per unit time for an infinite time span. We give the explicit expressions for the expected cost rate per unit time. Some numerical examples are presented for illustrative purposes.

  • PDF

Cost Analysis of Manufacturer Under the Free Replacement, Pro-rata, Hybrid and Stepdown Warranty Policy (단계별 사후보증제도와 무료, 비율, 혼합형 보증제도에서 제조업자 입장의 비용분석)

  • 김원중;김재중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.20
    • /
    • pp.39-45
    • /
    • 1989
  • This article is concerned with cost analysis in product warranty policy. The warranty cost can be different according to warranty rate and warranty renewal policy. In this paper the stepdown warranty is used. The warranty renewal policy is considered when the warranty is received upon free replacement period as item failing. Assuming the non repairable item as one item is sold, investigated manufacturer's cost in stepdown warranty policy. Also manufacturer's cost is calculated in the free replacement. pro-rata. hybrid policy. Numerical example is given over Weibull time to failure distribution, comparing stepdown warranty policy with free replacement, pro-rata, hybrid one in the manufacturer's point of view. The sensitivity analysis of warranty cost according to the number of warranty period step is included.

  • PDF

A Study on the Reliability of Space Launch Vehicle (우주발사체 신뢰성 분석기법에 관한 연구)

  • Yoo, Seung-Woo;Park, Keun-Young;Lee, Kyung-Chol;Lee, Sang-Jun
    • Journal of Applied Reliability
    • /
    • v.4 no.2
    • /
    • pp.105-119
    • /
    • 2004
  • Reliability program is essential to the development of space systems like launch vehicles and satellites, as they are non-repairable after launch and the failure of a launch vehicle resulted in catastrophic consequences for the mission. Foreign advanced space organizations have developed and implemented their own reliability management programs for launch vehicles from the conceptual design stage to the detail processes for the individual components, procedures and test reports. A study on the launch failures and the reliability analysis methods for one-shot devices contained in this paper will contribute to the reliability improvement for Korean launch vehicle and components.

  • PDF

Reliability Analysis of Multi-Component System Considering Preventive Maintenance: Application of Markov Chain Model (예방정비를 고려한 복수 부품 시스템의 신뢰성 분석: 마코프 체인 모형의 응용)

  • Kim, Hun Gil;Kim, Woo-Sung
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.313-322
    • /
    • 2016
  • Purpose: We introduce ways to employ Markov chain model to evaluate the effect of preventive maintenance process. While the preventive maintenance process decreases the failure rate of each subsystems, it increases the downtime of the system because the system can not work during the maintenance process. The goal of this paper is to introduce ways to analyze this trade-off. Methods: Markov chain models are employed. We derive the availability of the system consisting of N repairable subsystems by the methods under various maintenance policies. Results: To validate our methods, we apply our models to the real maintenance data reports of military truck. The error between the model and the data was about 1%. Conclusion: The models developed in this paper fit real data well. These techniques can be applied to calculate the availability under various preventive maintenance policies.

Analytic Investigation on Inelastic Behavior of Reinforced Concrete Frame with Seismic Detail (내진 상세 철근콘크리트 골조의 비탄성 거동에 관한 해석적 연구)

  • 박철용;이한선;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.466-472
    • /
    • 1996
  • The nonlinear analysis was perforned for a 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail using KDARC 2D program. The analytical models consist of the material model, the member model, the hysteretic model, and the damage model etc. The conclusion based on the results of analysis is as following. : (1) Story shear-displacement relationship is similar to the experiment result but from the energy point of view, the analysis relationship is similar to the experiment result but from the energy point of view, the analysis result was different from the experiment result. (2) Plastic hinges were found to occur mainly in beams at first story while all the columns had plastic hinges throughout the structure. (3) Failure mode is a little different from experiment result in the yielding mechanism. (4) Damage index isabout 0.25. This means that the degree of damage is moderate and can be repairable.

  • PDF

Reliability Analysis of the Man-Machine System Operating under Different Weather Conditions (기후조건을 고려한 인간-기계체계의 신속도)

  • 이길노;하석태
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.76-87
    • /
    • 1997
  • This paper deals with reliability and MTTF analysis of a non-repairable man-machine system operating under different weather conditions. The system consists of a hardware(machine) and a two-operator standby subsystem such as the air combat maneuvering of fighters with dual seat. The failure times for the subsystems follow the exponential distribution with constant parameter. By considering not only the effect on hardware component but also the weather conditions and human performance factors such as the operator's errors, a Markov model is presented as a method for evaluating the system reliability of time continuous operation tasks. Laplace transforms of the various state probabilities have been derived and then reliability of the system, at any time t, has been computed by inversion process. MTTF has also been computed.

  • PDF

A study on Determining Maintenance Intervals Considering the Maintenance Effect for the PDS in Metro EMU (전동차 승객용도어시스템의 유지보수 효과를 고려한 유지보수 주기 산정에 관한 연구)

  • Lee, Duk-Gyu;Son, Young-Jin;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.216-221
    • /
    • 2011
  • An important problem in reliability analysis for repairable systems is to model the maintenance effect. The most of researches have assumed two extreme cases; one is perfect maintenance and the other is minimal maintenance. However, many of maintenances performed by domestic subway operators are imperfect maintenances which have the effect between both of two extreme cases. This article deals with the problem determining the imperfect preventive maintenance intervals based on failure data in units of the PDS(passenger door system) in Metro EMU. This paper deals with a case study on determining imperfect maintenance interval by using the level of maintenance effect through reliability analysis of PDS.

Developing the Accurate Method of Test Data Assessment with Changing Reliability Growth Rate and the Effect Evaluation for Complex and Repairable Products

  • So, Young-Kug;Ryu, Byeong-Jin
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.90-100
    • /
    • 2015
  • Reliability growth rate (or reliability growth curve slope) have the two cases of trend as a constant or changing one during the reliability growth testing. The changing case is very common situation. The reasons of reliability growth rate changing are that the failures to follow the NHPP (None-Homogeneous Poisson Process), and the solutions implemented during test to break out other problems or not to take out all of the root cause permanently. If the changing were big, the "Goodness of Fit (GOF)" of reliability growth curve to test data would be very low and then reduce the accuracy of assessing result with test data. In this research, we are using Duane model and AMSAA model for assessing test data and projecting the reliability level of complex and repairable system as like construction equipment and vehicle. In case of no changing in reliability growth rate, it is reasonable for reliability engineer to implement the original Duane model (1964) and Crow-AMSAA model (1975) for the assessment and projection activity. However, in case of reliability growth rate changing, it is necessary to find the method to increase the "GOF" of reliability growth curves to test data. To increase GOF of reliability growth curves, it is necessary to find the proper parameter calculation method of interesting reliability growth models that are applicable to the situation of reliability growth rate changing. Since the Duane and AMSAA models have a characteristic to get more strong influence from the initial test (or failure) data than the latest one, the both models have a limitation to contain the latest test data information that is more important and better to assess test data in view of accuracy, especially when the reliability growth rate changing. The main objective of this research is to find the parameter calculation method to reflect the latest test data in the case of reliability growth rate changing. According to my experience in vehicle and construction equipment developments over 18 years, over the 90% in the total development cases are with such changing during the developing test. The objective of this research was to develop the newly assessing method and the process for GOF level increasing in case of reliability growth rate changing that would contribute to achieve more accurate assessing and projecting result. We also developed the new evaluation method for GOF that are applicable to the both models as Duane and AMSAA, so it is possible to compare it between models and check the effectiveness of new parameter calculation methods in any interesting situation. These research results can reduce the decision error for development process and business control with the accurately assessing and projecting result.

Sensitivity Analysis of Burn-in Model considering Bimodal-Mixed Weibull Distribution under Free Warranty Policy (무료보증정책하에서 이봉-혼합 와이블 분포를 고려한 Burn-in 모형의 민감도 분석)

  • Song Suh-Ill;Jo Young-Chan;Park Hyun-Kyu;Shon Han-Deak
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.544-555
    • /
    • 1998
  • Although the bimodal mixed weibull distribution is used to developing burn-in model widely, the failure times for a component or a system is often truncated at some time, T, due to the obsolescence in the electronics industry. In this paper, we will determine minimum total cost and burn-in time by using the bimodal mixed weibull distribution and the truncated bimodal mixed weibull distribution under the free warranty policy. The results of this study are summarized as follows. First, when products or system is not repairable, the width of the change of burn-in time can be larger by ${\beta}_1,\;{\beta}_2$ Second, if burn-in time become longer, it will be impossible to consider the bum-in in a long time, and in this case, the burn-in time should be shorten by the acceleration burn-in. Third, in case that opportunity loss cost or repair cost is exceed the warranty cost, or the total cost of considering burn-in is larger than that of not considering burn-in, it is not existed burn-in time which makes total cost to minimize. Forth, the shorter life-cycle of product, the more burn-in times will be decreased and the cost in considering burn-in will be increased

  • PDF

Study on the Efficiency of Multi-State κ-out-of-n System (다상태 κ-out-of-n 시스템의 효율에 관한 연구)

  • Kim, Jihyun;Nam, Hae Byur;Cha, Ji Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.119-130
    • /
    • 2013
  • A system with $n$ components which functions when at least ${\kappa}$ of the components function is called ${\kappa}$-out-of-$n$ system. Most studies on ${\kappa}$-out-of-$n$ system derive the system reliability based on the assumption that the system has just two states: functioning or failed. However, the system efficiency may depend on the number of functioning components. This paper considers a Multi-state ${\kappa}$-out-of-$n$ system and derives the total system efficiency. In addition, assuming that the system is repairable, the optimal repair policy to maximize the system efficiency is studied. The system efficiency considered in this paper can be regarded as a generalized measure of the mean time to the failure of the system.