• Title/Summary/Keyword: renewable materials

Search Result 512, Processing Time 0.027 seconds

A Study on Zero Energy House Model of Housing Complex (주택 단지 제로 에너지 하우스 모델에 관한 연구)

  • Huh, Myung Hoi;Shin, shung jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.121-126
    • /
    • 2020
  • In many parts of the world, climate warming has caused tremendous environmental disasters to repeat every year. Overuse of fossil fuels, the main source of energy, has affected the global environment, destroying the global ecosystem and depleting resources. To overcome this, efforts to reduce carbon emissions through the development of renewable energy are being actively studied at home and abroad. Already, new technologies are being reported abroad to reduce carbon emissions. Zero Energy House is a model that reduces low carbon emissions and energy use due to the use of high-density materials for high-heated materials, and can live in real life by receiving the minimum required energy through renewable energy. Although the government is trying to apply this in Korea, it is difficult to become common because of the lack of economic feasibility. The purpose of this study is to study models that can zero carbon emissions, which are eco-friendly elements, secure construction economy of zero energy house by using ventilation system, heat exchanger and energy storage system for public use, and attach automation system to window opening/closing to maintain indoor temperature.

Application and Revitalization Method of Domestic Geothermal Heat Pump System (국내의 지열에너지 열펌프 시스템 활용현황과 활성화 방안)

  • Park, Hye-Ri;Ko, Young-Ho;Kim, Min-Tae;Park, Jong-Li
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.922-927
    • /
    • 2009
  • Due to the law of use of sustainable alternative energy recently legislated, many public institutions are ordered to use renewable energy. So it gets people's eyes on Geothermal energy system among other suggested renewable energy. Since there is hardly existence of a volcanic region, Geothermal heat pump system is generally used most in Korea. However, the important technology and materials are not localized and further, with only our technical skills it is arduous to popularize and develop Geothermal energy because of lack of revitalization related to the law and the regime for locally suitable Data-base. Moreover, an access of renewable energy is too much hard because of people's low interests about Geothermal energy. But fortunately, the well-studied about Geothermal heat system started to be adopted in many other provinces. Therefore, we study this with intend to popularize and develop Geothermal energy.

  • PDF

Hydrogen production in the light of sustainability: A comparative study on the hydrogen production technologies using the sustainability index assessment method

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1288-1294
    • /
    • 2022
  • Hydrogen as an environmentally friendly energy carrier has received special attention to solving uncertainty about the presence of renewable energy and its dependence on time and weather conditions. This material can be prepared from different sources and in various ways. In previous studies, fossil fuels have been used in hydrogen production, but due to several limitations, especially the limitation of the access to this material in the not-too-distant future and the great problem of greenhouse gas emissions during hydrogen production methods. New methods based on renewable and green energy sources as energy drivers of hydrogen production have been considered. In these methods, water or biomass materials are used as the raw material for hydrogen production. In this article, after a brief review of different hydrogen production methods concerning the required raw material, these methods are examined and ranked from different aspects of economic, social, environmental, and energy and exergy analysis sustainability. In the following, the current position of hydrogen production is discussed. Finally, according to the introduced methods, their advantages, and disadvantages, solar electrolysis as a method of hydrogen production on a small scale and hydrogen production by thermochemical method on a large scale are introduced as the preferred methods.

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.

R&D Status of Na/NiCl2 Battery (Na/NiCl2 전지의 연구 개발 동향)

  • Kim, Hyun-Soo;Lee, Sang-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.124-134
    • /
    • 2012
  • Environmental concerns over the use of fossil fuels and their resource constraints have spurred increasing interest of renewable energy, and the needs for energy storage from the renewable resources is getting rapidly increase. Na/$NiCl_2$ cell could be use electric vehicles as well as energy storage, because it has a high energy-efficiency, environmental-friendly, low cost. However, there remain several issues on improvement of materials, component, cell design, and process, to use in broad applications and to penetrate to market. This paper offers a comprehensive review on R&D status of the structure, chemistry, key materials, and cell design & manufacture for Na/$NiCl_2$ cells.

A Study on the Composition of Silver Paste for Micro Nozzle Dispensing Method (미세노즐 토출에 적용 가능한 은 전극의 조성에 대한 연구)

  • Kim, Do-Hyung;Shin, Dong-Wook;Ryu, Sung-Soo;Chang, Hyo-Sik;Kim, Hyeong-Jun
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • The screen printing has been widely used to form silver electrodes in solar cell device due to their simplicity of process. However, the wavy and irregular surface which is believed to be originated from a screen mask mesh and thixotropic characteristics of paste on screen printing process is well-known to give a negative effect on solar cell efficiency. The dispensing method that the silver paste is extruded through micro nozzle under a moderate pressure and coated on substrate can form the silver electrode without any wavy surface. In this study, we optimize the composition of silver paste and develop paste blending condition based on the thixotropic behavior of paste. The optimized paste shows a large thixotropic loop area which is related to an aspect ratio of electrode line and has the viscosity of 40 $Pa{\cdot}s$ at 40 s-1. The electrode line we finally obtainis 67.2 ${\mu}m$ in width and has an aspect ratio of 0.277.

Effect of Boron Content and Temperature on Interactions and Electron Transport in BGaN Bulk Ternary Nitride Semiconductors

  • Bouchefra, Yasmina;Sari, Nasr-Eddine Chabane
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This work takes place in the context of the development of a transport phenomena simulation based on group III nitrides. Gallium and boron nitrides (GaN and BN) are both materials with interesting physical properties; they have a direct band gap and are relatively large compared to other semiconductors. The main objective of this paper is to study the effect of boron content on the electron transport of the ternary compound $B_xGa_{(1-x)}N$ and the effect of the temperature of this alloy at x=50% boron percentage, specifically the piezoelectric, acoustic, and polar optical scatterings as a function of the energy, and the electron energy and drift velocity versus the applied electric field for different boron compositions ($B_xGa_{(1-x)}N$), at various temperatures for $B_{0.5}Ga_{0.5}N$. Monte carlo simulation, was employed and the three valleys of the conduction band (${\Gamma}$, L, X) were considered to be non-parabolic. We focus on the interactions that do not significantly affect the behavior of the electron. Nevertheless, they are introduced to obtain a quantitative description of the electronic dynamics. We find that the form of the velocity-field characteristic changes substantially when the temperature is increased, and a remarkable effect is observed from the boron content in $B_xGa_{(1-x)}N$ alloy and the applied field on the dynamics of holders within the lattice as a result of interaction mechanisms.

Development of Inexpensive High Energetic Electrodes Ni-Cu and Ni-CeO2-Cu for Renewable Energy through Direct Ethanol Fuel Cell

  • Guchhait, Sujit Kumar;Paul, Subir
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.190-198
    • /
    • 2016
  • Application of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode materials. Development of inexpensive, high energetic electrode is the need of the hour to produce pollution free energy using bio-fuel through a fuel cell. Ni-Cu and Ni-CeO2-Cu electrode materials, electro synthesized by pulse current have been developed. The surface morphology of the electrode materials is controlled by different deposition parameters in order to produce a high current from the electro-oxidation of the fuel, the ethanol. The developed materials are electrochemically characterized by Cyclic Voltammetry (CV), Chronoamperometry (CA) and Potentiodynamic polarization tests. The results confirm that the high current is due to their enhanced catalytic properties viz. high exchange current density (i0), low polarization resistance (Rp) and low impedance. It is worthwhile to mention here that the addition of CeO2 to Ni-Cu has outperformed Pt as far as the high electro catalytic properties are concerned; the exchange current density is about eight times higher than the same on Pt surface. The morphology of the electrode surface examined by SEM and FESEM exhibits that the grains are narrow and sub spherical with 3D surface, containing vacancies in between the elongated grains. The fact has enhanced more surface area for electro oxidation of the fuel, giving rise to an increase in current. Presence of Ni, CeO2, and Cu is confirmed by the XRD and EDXS. Fuel cell fabricated with Ni-CeO2-Cu material electrode is expected to produce clean electrical energy at cheaper rates than conventional one, using bio fuel the derived from biomass.

Application of Layered Perovskites Substituted with Co and Ti as Electrodes in SOFCs (Co 및 Ti가 치환된 Layered perovskite의 SOFC 전극에 대한 적용성 연구)

  • Kim, Chan Gyu;Shin, Tae Ho;Nam, Jung Hyun;Kim, Jung Hyun
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.40-49
    • /
    • 2022
  • In this study, the phase and electrochemical properties of Co and Ti substituted layered perovskites SmBaCo2-xTixO5+d (x=0.5, 0.7, 1.0, 1.1, 1.3, and 1.5) were analyzed, and their application as electrodes in solid oxide fuel cells (SOFCs) were evaluated. After calcination at 1300℃ for 6 h, a single phase was observed for two compositions of the SmBaCo2-xTixO5+d oxide system, SmBaCoTiO5+d (x=1.0) and SmBaCo0.9Ti1.1O5+d (x=1.1). However, the phases of SmBaCoTiO5+d (SBCTO) and SmTiO3 coexisted for compositions with x≥1.3 (Ti content). In contrast, for compositions of x≤0.7, the SmBaCo2O5+d phase was observed instead of the SmTiO3 phase. To evaluate the applicability of these materials as SOFC electrodes, the electrical conductivities were measured under various atmospheres (air, N2, and H2). SBCTO exhibited stable semi-conductor electrical conductivity behavior in an air and N2 atmosphere. However, SBCTO showed insulator behavior at temperatures above 600℃ in a H2 atmosphere. Therefore, SBCTO may only be used as cathode materials. Moreover, SBCTO had an area specific resistance (ASR) value of 0.140 Ω·cm2 at 750℃.

Estimation of the Amount of Round Wood in Unused Forest Biomass Reporting in Forest Clearing (미이용 산림바이오매스 공급에 있어 수확벌채의 원목 혼입량 추정)

  • Jiyoon, Yang;Jaejung, Lee;Hanseob, Jeong;Sang Hun, Han;Soo Min, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.70-78
    • /
    • 2022
  • To respond to global warming, there is an increasing interest in eco-friendly alternative energy sources. Therefore, unused forest biomass that has been neglected due to a lack of marketability is attracting attention. With the introduction of the "unused forest biomass certification system" in 2019, ways of determining quantity of unused forest biomass have steadily increased. However, there have been reported cases whereby unused forest biomass weighed more than the amount of harvested trees. It was found that it was possible that forest resources that can be used as round wood were mixed with unused forest biomass. In this context, this study aimed to estimate the amount of mixed round wood in the unused forest biomass supply. The relative expression of growing stock/ha versus the amount of final clearing/ha collected was modeled (y=1.490x-94.341, R2=0.861). As a result, it was found that round wood was mixed into the unused forest biomass, contributing to the disparity observed between the weighted forest biomass and the amount of trees harvested. In conclusion, proper declaration and certification procedures should be carried out for the use of forest resources and promoting unused forest biomass usage.