Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.3.124

R&D Status of Na/NiCl2 Battery  

Kim, Hyun-Soo (Battery Research Center, Korea Electrotechnology Research Institute)
Lee, Sang-Min (Battery Research Center, Korea Electrotechnology Research Institute)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.3, 2012 , pp. 124-134 More about this Journal
Abstract
Environmental concerns over the use of fossil fuels and their resource constraints have spurred increasing interest of renewable energy, and the needs for energy storage from the renewable resources is getting rapidly increase. Na/$NiCl_2$ cell could be use electric vehicles as well as energy storage, because it has a high energy-efficiency, environmental-friendly, low cost. However, there remain several issues on improvement of materials, component, cell design, and process, to use in broad applications and to penetrate to market. This paper offers a comprehensive review on R&D status of the structure, chemistry, key materials, and cell design & manufacture for Na/$NiCl_2$ cells.
Keywords
Na/$NiCl_2$ cell; ZEBRA; Na-beta battery (NBB); Sodium-beta battery (SBB); Beta alumina;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Coetzer, 'A new high energy density battery system' J. Power Sources, 18, 377 (1986).   DOI
2 J. Sudworth, 'The sodium/nickel chloride (ZEBRA) battery' J. Power Sources, 100, 149 (2001).   DOI
3 G. Yamaguch and K. Suzuki, 'On the structures of alkali polyaluminates' Bull. Chem. Soc. Japan, 41, 93 (1968).   DOI
4 M. Bettman and C. Peters, 'Crystal structure of $Na_{2}O{\cdot}MgO{\cdot}5Al_{2}O_{3} $[sodium oxide-magnesia-alumina] with reference to $Na_{2}O{\cdot}5Al_{2}O_{3} $ and other isotypal compounds' J. Phys. Chem., 73, 1774 (1969).   DOI
5 A. Virkar, G. Miller, and R. Gordon, 'Resistivitymicrostructure relations in lithia-stabilized polycrystalline ${\beta}^{{\prime}{\prime}}$-alumina' J. Am. Ceram. Soc., 61, 250 (1978).   DOI
6 G. Youngblood, G. Miller, and R. Gordon, 'Relative effects of phase conversion and grain size on sodium ion conduction in polycrystalline, lithia-stabilized ${\beta$-alumina' J. Am. Ceram. Soc., 61, 86 (1978).   DOI
7 S. Tan, 'The dependence of the fracture stress of betaalumina on microstructural defects' J. Mater. Sci., 12, 1058 (1977).   DOI
8 J. Hwang, S. Bae, and M. Kim, 'NaS battery for highformat energy storage' Ceramist, 15, 45 (2012).
9 A. Ray and E. Subbarao, 'Synthesis of sodium ${\beta$ and ${\beta}^{{\prime}{\prime}}$ alumina' Mater. Res. Bull., 10, 583 (1975).   DOI
10 J. Kummer and N. Weber, U.S. Patent 3,413,150 (1968).
11 Z. Yang, J. Zhang, M. Kintner-Meyer, X. Lu, D. Choi, J. Lemmon, and J. Liu, 'Electrochemical energy storage for green grid' Chem. Rev., 111, 3577 (2011).   DOI
12 X. Lu, G. Xia, J. Lemmon, and Z. Yang, 'Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives' J. Power Sources, 195, 2431 (2010).   DOI
13 C. Dustmann, 'Advances in ZEBRA batteries' J. Power Sources, 127, 85 (2004).   DOI
14 A. van Zyl, 'Review of the zebra battery system development' Solid State Ionics, 86-88, 883 (1996).   DOI
15 R. Galloway, 'A sodium/beta alumina/nickel chloride secondary cell accelerated brief communications' J. Electrochem. Soc., 134, 256 (1987).   DOI
16 K. Adendorff and M. Thackeray, 'The crystal chemistry of the Na/$FeCl_{2}$ battery' J. Electrochem. Soc., 135, 2121 (1988).   DOI
17 J. Prakash, L. Redey, and D. Vissers, 'Electrochemical behavior of nonporous $Ni/NiCl_{2}$ electrodes in chloroaluminate melts' J. Electrochem. Soc., 147, 502 (2000).   DOI
18 R. Galloway and S. Haslam, 'The ZEBRA electric vehicle battery: power and energy improvements' J. Power Sources, 80, 164 (1999).   DOI
19 J. Coetzer, G. Wald, and S. Orchard, J. Appl. Electrochem., 23, 790 (1993).   DOI
20 S. Orchard and J. Weaving, 'Modelling of the sodiumferrous chloride electrochemical cell' J. Appl. Electrochem., 23, 1214 (1993).
21 H. Hong, 'Crystal structures and crystal chemistry in the system $Na_{1+x}Zr_{2}Si_{x}P_{3x}O_{12}$' Mater. Res. Bull., 11, 173 (1976).   DOI
22 B. Ratnakumar, A. Attia, and G. Halpert, 'Alternate cathodes for sodium-metal chloride batteries' J. Electrochem. Soc., 138, 883 (1991).   DOI
23 R. Roumieu and A. Pelton, 'EMF measurements in nickel chloridesodium chloride melts with betaalumina electrolytes' J. Electrochem. Soc. 128, 50 (1981).   DOI
24 J. Goodenough, H. Hong, and J. Kafalas, 'Fast $Na^{+}$ -ion transport in skeleton structures' Mater. Res. Bull., 11, 203 (1976).   DOI
25 D. Demott, 'Resistance rise in sodiumsulphur cells accelerated brief communications' J. Electrochem. Soc., 127, 2312 (1980).   DOI
26 A. Imai, M. Harata, 'Ionic conduction of impurity-doped beta-alumina ceramics' Jpn. J. Appl. Phys., 11, 180 (1972).   DOI
27 M. Wright and M. Hames, British Patent Application 2,080,608 (1982).
28 W. Bugden, P. Barrow, and J. Duncan, 'The control of the resistance rise of sodium sulphur cells' Solid State Ionics, 5, 275 (1981).   DOI
29 L. Viswanathan, A. Virkar, 'Wetting characteristics of sodium on ${\beta}^{{\prime}{\prime}}$-alumina and on nasicon' J. Mater. Sci., 17, 753 (1982).   DOI
30 R. Bones, J. Coetzer, R. Galloway, and D. Teagle, 'A sodium/iron(ii) chloride cell with a beta alumina electrolyte' J. Electrochem. Soc., 134, 2379 (1987).   DOI
31 P. Moseley, R. Bones, D. Teagle, B. Bellamy, and R. Hawes, 'Stability of beta alumina electrolyte in sodium/ $FeCl_{2}$ (ZEBRA) cells' J. Electrochem. Soc., 136, 1361 (1989).   DOI
32 B. Ratnakumar, S. Distefano, and G. Halpert, 'Electrochemistry of metal chloride cathodes in sodium batteries' J. Electrochem. Soc., 137, 2991 (1990).   DOI
33 S. Distefano, B. Ratnakumar, and C. Bankston, 'Advanced rechargeable sodium batteries with novel cathodes' J. Power Sources, 29, 301 (1990).   DOI
34 B. Ratnakumar, A. Attia, and G. Halpert, 'Sodium metal chloride battery research at the Jet Propulsion Laboratory (JPL)' J. Power Sources, 36, 385 (1991).   DOI
35 J. Prakash, L. Redey, and D. Vissers, 'Morphological considerations of the nickel chloride electrodes for zebra batteries' J. Power Sources, 84, 63 (1999).   DOI
36 J. Binner and R. Stevens, 'Improvement in the mechanical properties of polycrystalline beta-alumina via the use of zirconia particles containing stabilizing oxide additions' J. Mater. Sci., 20, 3119 (1985).   DOI
37 D. Green, J. Mater. Sci., 'Transformation toughening and grain size control in ${\beta}^{{\prime}{\prime}}$-$Al_{2}O_{3}/ZrO_{2}$ composites', 20, 2639 (1985).   DOI
38 S. Heavens, 'Strength improvement in ${\beta}^{{\prime}{\prime}}$ alumina by incorporation of zirconia' J. Mater. Sci., 23, 3515 (1988).   DOI
39 H. Engstrom, J. Bates, W. Brundage, and J. Wang, 'Ionic conductivity of sodium beta-alumina' Solid State Ionics, 2, 265 (1981).   DOI
40 A. Virkar, 'On some aspects of breakdown of ${\beta}^{{\prime}{\prime}}$-alumina solid electrolyte' J. Mater. Sci., 16, 1142 (1981).   DOI
41 J. Bates, H. Engstrom, J. Wang, B. Larson, N. Dudney, and W. Brundage, 'Composition, ion-ion correlations and conductivity of beta alumina' Solid State Ionics, 5, 159 (1981).   DOI
42 A. Virkar, G. Tennenhouse, and R. Gordon, 'Hotpressing of $Li_{2}O$-stabilized ${\beta}^{{\prime}{\prime}}$-alumina' J. Am. Ceram. Soc., 57, 508 (1974).
43 T. Whalen, G. Tennenhouse, C. Meyer, 'Relation of properties to microstructure in ${\beta}^{{\prime}{\prime}}$-alumina ceramic' J. Am. Ceram. Soc., 57, 497 (1974).   DOI
44 A. Virkar and R. Gordon, 'Fracture properties of polycrystalline lithia-stabilized ${\beta}^{{\prime}{\prime}}$-alumina' J. Am. Ceram. Soc., 60, 58 (1977).   DOI
45 M. Breiter, B. Dunn, and R. Powers, 'Asymmetric behavior of beta-alumina' Electrochim. Acta, 25, 613 (1980).   DOI
46 Y. Sheng, P. Sarkar, and P. Nicholson, 'The mechanical and electrical properties of $ZrO_{2}-Na{\beta}^{{\prime}{\prime}}-Al_{2}O_{3}$ composites' J. Mater. Sci., 23, 958 (1988).   DOI
47 P. Morgan, 'Low temperature synthetic studies of betaaluminas' Mater. Res. Bull., 11, 233 (1976).   DOI
48 T. Takahashi and K. Kuwabara, '${\beta}$-$Al_{2}O_{3}$ synthesis from m-$Al_{2}O_{3}$' J. Appl. Electrochem., 10, 291 (1980) 291.   DOI
49 M. Zaharescu, C. Parlog, V. Stancovschi, D. Crisan, A. Braileanu, and T. Surdeanu, 'The influence of the powders synthesis method on the microstructure of lanthanum-stabilized ${\beta$-alumina ceramics' Solid State Ionics, 15, 55 (1985).   DOI
50 S. Yamaguchi, K. Terabe, Y. Iguchi, and A. Imai, 'Formation and crystallization of beta-alumina from precursor prepared by sol-gel method using metal alkoxides' Solid State Ionics, 25, 171 (1987).   DOI
51 A. Pekarsky and P.S. Nicholson, 'The relative stability of spray-frozen/freeze-dried ${\beta}^{{\prime}{\prime}}$'-$Al_{2}O_{3}$ powders' Mater. Res. Bull., 15, 1517 (1980).   DOI
52 A. Vanzyl, M. M. Thackeray, G. K. Duncan, A. I. Kingon, and R. O. Heckroodt, 'The synthesis of beta alumina from aluminium hydroxide and oxyhydroxide precursors' Mater. Res. Bull., 28, 145 (1993).   DOI
53 P. Parthasarathy. N. Weber, and A. Virkar, 'High temperature sodium-zinc chloride batteries with sodium beta-alumina solid electrolyte' ECS Trans. 6, 67 (2007).
54 J. Kennedy and A. Foissy, 'Fabrication of betaalumina tubes by electrophoretic deposition from suspensions in dichloromethane' J. Electrochem. Soc., 122, 482 (1975).   DOI
55 R. Powers, 'The electrophoretic forming of betaalumina ceramic' J. Electrochem. Soc., 122, 490 (1975).   DOI
56 R. Bones, D. Teagle, S. Brooker, and F. Cullen, 'Development of a Ni,$NiCl_{2}$ positive electrode for a liquid sodium (ZEBRA) battery cell' J. Electrochem. Soc., 136, 1274 (1989).   DOI