Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.3.190

Development of Inexpensive High Energetic Electrodes Ni-Cu and Ni-CeO2-Cu for Renewable Energy through Direct Ethanol Fuel Cell  

Guchhait, Sujit Kumar (Metallurgical and Material Engineering Department And Centre of excellence, TEQIP-II, Jadavpur University)
Paul, Subir (Metallurgical and Material Engineering Department And Centre of excellence, TEQIP-II, Jadavpur University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.3, 2016 , pp. 190-198 More about this Journal
Abstract
Application of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode materials. Development of inexpensive, high energetic electrode is the need of the hour to produce pollution free energy using bio-fuel through a fuel cell. Ni-Cu and Ni-CeO2-Cu electrode materials, electro synthesized by pulse current have been developed. The surface morphology of the electrode materials is controlled by different deposition parameters in order to produce a high current from the electro-oxidation of the fuel, the ethanol. The developed materials are electrochemically characterized by Cyclic Voltammetry (CV), Chronoamperometry (CA) and Potentiodynamic polarization tests. The results confirm that the high current is due to their enhanced catalytic properties viz. high exchange current density (i0), low polarization resistance (Rp) and low impedance. It is worthwhile to mention here that the addition of CeO2 to Ni-Cu has outperformed Pt as far as the high electro catalytic properties are concerned; the exchange current density is about eight times higher than the same on Pt surface. The morphology of the electrode surface examined by SEM and FESEM exhibits that the grains are narrow and sub spherical with 3D surface, containing vacancies in between the elongated grains. The fact has enhanced more surface area for electro oxidation of the fuel, giving rise to an increase in current. Presence of Ni, CeO2, and Cu is confirmed by the XRD and EDXS. Fuel cell fabricated with Ni-CeO2-Cu material electrode is expected to produce clean electrical energy at cheaper rates than conventional one, using bio fuel the derived from biomass.
Keywords
Inexpensive high energetic electrode; Ni-CeO2-Cu electrode; Ethanol oxidation; Cyclic Voltammetry; X-ray Diffraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Y. Shen, T. S. Zhao, J. B. Xu and Y. S. Li, J. Power Sources, 2010, 195, 1001-1006.   DOI
2 Parson, Inc., Fuel cell handbook., U.S Department of Energy, West Virginia (2000).
3 R. Dillon, S. Srinivasan, A. S. Aricò and V. Antonucci, J. Power Sources., 2004, 127, 112-126.   DOI
4 C. Xu, Z. Tian, P. Shen and S. P. Jiang, Electrochim. Acta, 2008, 53, 2610-2618.   DOI
5 C. Lamy, A. Lima, V. LeRhun, F. Delima, C. Coutanceau and J.-M. Léger, J. Power Sources, 2002, 105, 283-296.   DOI
6 C. Xu, P. K. Shen and Y. Liu, J. Power Sources, 2007, 164, 527–531.   DOI
7 G. Andreadis, S. Q. Song and P. Tsiakaras, J. Power Sources, 2006, 157, 657-665.   DOI
8 S. Rousseau, C. Coutanceau, C. Lamy and J.-M. Léger, J. Power Sources, 2006, 158, 18-24.   DOI
9 Z.-B. Wang, G.-P. Yin, J. Zhang, Y.-C. Sun and P.-F. Shi, J. Power Sources, 2006, 160, 37-43.   DOI
10 S. Song and P. Tsiakaras, Appl. Catal. B, 2006, 63, 187-193.   DOI
11 S. Paul, J. Fuel Cell Sci. Technol., 2012, 9, 021013.   DOI
12 Z.-X. Liang and T. S. Zhao, Issue 6 of RSC energy and environment series, Royal Society of Chemistry, PP4 (2012).
13 K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka and Z. Ogumi, J. Power Sources, 2005, 150, 27-31.   DOI
14 F. Hu, C. Chen, Z. Wang, G. Wei and P. K. Shen, Electrochem. Acta, 2006, 52, 1087-1091.   DOI
15 C. Cremers, D. Bayer, B. Kintzel, M. Joos, F. Jung, M. Krausa and J. Tübke, ECS Trans., 2008, 16(2), 1263-1273.
16 C. Lamy, T. Jaubert, S. Baranton and C. Coutanceau, J. Power Sources, 2014, 245, 927-936.   DOI
17 B. C. H. Steele and A. Heinzel, Nature, 2001, 414, 345-352.   DOI
18 J.-J. Huang, W.-S. Hwang, Y.-C. Weng and T.-C. Chou, Materials Transactions, 2009, 50, 1139-1147.   DOI
19 Z. X. Liang, T. S. Zhao, J. B. Xu and L. D. Zhu, Electrochem. Acta, 2009, 54, 2203-2208.   DOI
20 R. N. Singh, A. Singh and Anindita, Carbon, 2009, 47, 271-278.   DOI
21 S. Paul, Sk Naimuddin and A. Ghosh, Journal of Fuel Chemistry and Technology, 2014, 42(1), 87-95.   DOI
22 S. Paul and Sk Naimuddin, J. Fuel Cell Sci. Tech., 2015, 12(1), 011007.   DOI
23 M. A. Scibioh, S.-K. Kim, E. A. Cho, T.-H. Lim, S.-A. Hong and H. Y. Ha, Appl. Catal. B, 2008, 84, 773-782.   DOI
24 C. L. Perkins, M. A. Henderson, C. H. F. Peden and G. S. Herman, J. Vac. Sci. Technol. A., 2001, 19, 1942.
25 D. Tang, J. Lu, L. Zhuang and P. Liu, J. Electroanal. Chem., 2010, 644, 144-149.   DOI
26 Y. Zhou, Y. Gao, Y. Liu and J. Liu, J. Power Sources, 2010, 195, 1605-1609.   DOI
27 C. L. Campos, C. Roldan, M. Aponte, Y. Ishikawa and C. R. Cabrera, J. Electroanal. Chem., 2005, 581, 206-215.   DOI
28 S. Paul, Nanomaterials and Energy, 2015, 4, 80-89.   DOI
29 D. R. Gabe, Transactions of the Institute of Metal Finishing, 2005, 83, 121-124.   DOI
30 S. K. Guchhait and S. Paul, Journal of Fuel Chemistry and Technology, 2015, 43, 1004-1010.   DOI