Browse > Article
http://dx.doi.org/10.7849/ksnre.2022.0006

Application of Layered Perovskites Substituted with Co and Ti as Electrodes in SOFCs  

Kim, Chan Gyu (Department of Advanced materials Science and Engineering, Hanbat National University)
Shin, Tae Ho (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology (KICET))
Nam, Jung Hyun (Department of Polymer Science and Engineering, Sungkyunkwan University)
Kim, Jung Hyun (Department of Advanced materials Science and Engineering, Hanbat National University)
Publication Information
New & Renewable Energy / v.18, no.2, 2022 , pp. 40-49 More about this Journal
Abstract
In this study, the phase and electrochemical properties of Co and Ti substituted layered perovskites SmBaCo2-xTixO5+d (x=0.5, 0.7, 1.0, 1.1, 1.3, and 1.5) were analyzed, and their application as electrodes in solid oxide fuel cells (SOFCs) were evaluated. After calcination at 1300℃ for 6 h, a single phase was observed for two compositions of the SmBaCo2-xTixO5+d oxide system, SmBaCoTiO5+d (x=1.0) and SmBaCo0.9Ti1.1O5+d (x=1.1). However, the phases of SmBaCoTiO5+d (SBCTO) and SmTiO3 coexisted for compositions with x≥1.3 (Ti content). In contrast, for compositions of x≤0.7, the SmBaCo2O5+d phase was observed instead of the SmTiO3 phase. To evaluate the applicability of these materials as SOFC electrodes, the electrical conductivities were measured under various atmospheres (air, N2, and H2). SBCTO exhibited stable semi-conductor electrical conductivity behavior in an air and N2 atmosphere. However, SBCTO showed insulator behavior at temperatures above 600℃ in a H2 atmosphere. Therefore, SBCTO may only be used as cathode materials. Moreover, SBCTO had an area specific resistance (ASR) value of 0.140 Ω·cm2 at 750℃.
Keywords
Layered perovskite; Electrode; Solid oxide fuel cell; Electrical conductivity; Area specific resistance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Rogelj, J., Schaeffer, M., Meinshausen, M., Knutti, R., Alcamo, J., Riahi, K., and Hare, W., 2015, "Zero emission targets as long-term global goals for climate protection", Environ. Res. Lett., 10(10), 105007.   DOI
2 Matsumura, Y., and Nakamori, T., 2004, "Steam reforming of methane over nickel catalysts at low reaction temperature", Appl. Catal. A: Gen., 258(1), 107-114.   DOI
3 Xia, W., Liu, X., Jin, F., Jia, X., Shen, Y., and Li, J., 2020, "Evaluation of calcium co doping in double perovskite PrBaCo2O5+δ as cathode material for IT-SOFCs", Electrochim. Acta, 364, 137274.   DOI
4 Cascos, V., Fernandez-Diaz, M.T., and Alonso, J.A., 2019, "Structural and electrical characterization of the novel SrCo1-xTixO3-δ(x =0.05, 0.1 and 0.15) perovskites: Evaluation as cathode materials in solid oxide fuel cells", Renew. Energy, 133, 205-215.   DOI
5 Kim, C.G., Woo, S.H., Song, K.E., Baek, S.W., Kang, H.I., Choi, W.S., and Kim, J.H., 2021, "Enhanced electrochemical properties of Non-stoichiometric layered perovskites, Sm1-xBaCo2O5+d, for IT-SOFC cathodes", Front. Chem., 9.
6 Tong, L., and Tian, D., 2019, "A new A-site-deficient Ti-doped SrCoO3-δ perovskite cathode material for intermediate-temperature solid oxide fuel cells", Mater. Sci. Eng., 490(2),022029.
7 Wang, S., Zan, J., Qiu, W., Zheng, D., Li, F., Chen, W., Pei, Q., and Jiang, L., 2021, "Evaluation of perovskite oxides LnBaCo2O5+δ (Ln = La, Pr, Nd and Sm) as cathode materials for IT-SOFC", J. Electroanal. Chem., 886, 115144.   DOI
8 Du, Z., Li, K., Zhao, H., Dong, X., Zhang, Y., and Swierczek, K., 2020, "A SmBaCo2O5+δdouble perovskite with epitaxially grown Sm0.2Ce0.8O2-δ nanoparticles as a promising cathode for solid oxide fuel cells", J. Mater. Chem. A, 8(28), 14162-14170.   DOI
9 Zhang, Y., Zhao, H., Du, Z., Swierczek, K., and Li, Y., 2019, "High-Performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell", Chem. Mater., 31(10), 3784-3793.   DOI
10 Kim, J.H., Kim, Y.M., Connor, P.A., Irvine, J.T.S., Bae, J.M., and Zhou, W., 2009, "Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells", J. Power Sources, 194(2), 704-711.   DOI
11 Olszewska, A., Swierczek, K., and Niemczyk, A., 2020, "Peculiar properties of electrochemically oxidized SmBaCo2-xMnxO5+δ (x = 0; 0.5 and 1) A-Site ordered perovskites", Crystals, 10(3), 205.   DOI
12 Murray, E.P., Tsai, T., and Barnett, S.A., 1998, "Oxygen transfer processes in (La,Sr) MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study", Solid State Ion., 110(3-4), 235-243.   DOI
13 Sun, C., Kong, Y., Shao, L., Sun, K., and Zhang, N., 2020, "Probing oxygen vacancy effect on oxygen reduction reaction of the NdBaCo2O5+δcathode for solid oxide fuel cells", J. Power Sources, 459, 228017.   DOI
14 Davis, S.J., Lewis, N.S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I.L., Benson, S.M., Bradley, T., Brouwer, J., and Chiang, Y.M., et al., 2018, "Net-zero emissions energy systems", Science, 360, 6396.
15 Davis, W., and Martin, M., 2014, "Optimal year-round operation for methane production from CO2 and water using wind energy", Energy, 69, 497-505.   DOI
16 Jin, F., Liu, J., Niu, B., Ta, L., Li, R., Wang, Y., Yang, X., and He, T., 2016, "Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δcathode for intermediate-temperature solid-oxide fuel cells", Int. J. Hydrog. Energy, 41, 21439-21449.   DOI
17 Yang, Q., Tian, D., Liu, R., Wu, H., Chen, Y., Ding, Y., Lu, X., and Lin, B., 2021, "Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln= La and Nd) for SOFCs", Int. J. Hydrog. Energy., 46(7), 5630-5641.   DOI
18 Song, K.E., Woo, S.H., Baek, S.W., Kang, H.I., Choi, W.S., Park, J.Y., and Kim, J.H., 2021, "SmBa1-xCaxCo2O5+d layered perovskite cathodes for intermediate temperature-operating solid oxide fuel cells", Front. Chem., 8.
19 Woo, S.H., Shin, T.H., Kang, H.I., Choi, W.S., Kim, H.S., and Kim, J.H., 2019, "Phase synthesis and electrochemical characteristics of Non-stoichimometric Sm1-xBa0.5Sr0.5Co2O5+d layered perovskites for IT-SOFC cathodes", New. Renew. Energy, 15(2), 81-89.   DOI
20 Steele, B.C.H., 1996, "Survey of materials selection for ceramic fuel cells II. Cathodes and anodes", Solid State Ion., 86-88(2), 1223-1234.   DOI
21 Zan, J., Wang, S., Zheng, D., Li, F., Chen, W., Pei, Q., and Jiang, L., 2021, "Characterization and functional application of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode material for IT-SOFC", Mater. Res. Bull., 137, 111173.   DOI
22 Gao, J., Li, Q., Xia, W., Sun, L., Huo, L.H., and Zhao, H., 2019, "Advanced electrochemical performance and CO2 tolerance of Bi0.5Sr0.5Fe1-xTixO3-δ perovskite materials as oxygen reduction cathodes for intermediate-temperature solid oxide fuel cells", ACS Sustain. Chem. Eng., 7(22), 18647-18656.   DOI
23 Mori, M., Wang, Z., Serizawa, N., and Itoh, T., 2011, "Evaluation of SrTi1-xCoxO3 perovskites (0 ≤ x ≤ 0.2) as interconnect materials for solid oxide fuel cells", J. Fuel Cell Sci. Technol., 8(5), 051010.   DOI
24 Kaur, P., and Singh, K., 2020, "Review of perovskite-structure related cathode materials for solid oxide fuel cells", Ceramics International, 46(5), 5521-5535.   DOI
25 Guan, R., Wang, Z., Xu, H., Hao, X., Yang, L., Liu, J., Yu, S., and He, T., 2022, "Manipulating the activity and thermal compatibility of NdBaCoFeO5+δ cathodes for intermediate-temperature solid oxide fuel cells via fluorine doping", ACS Appl. Energy Mater., 5(1), 481-491.   DOI