DOI QR코드

DOI QR Code

R&D Status of Na/NiCl2 Battery

Na/NiCl2 전지의 연구 개발 동향

  • Kim, Hyun-Soo (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Sang-Min (Battery Research Center, Korea Electrotechnology Research Institute)
  • 김현수 (한국전기연구원 전지연구센터) ;
  • 이상민 (한국전기연구원 전지연구센터)
  • Received : 2012.08.20
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

Environmental concerns over the use of fossil fuels and their resource constraints have spurred increasing interest of renewable energy, and the needs for energy storage from the renewable resources is getting rapidly increase. Na/$NiCl_2$ cell could be use electric vehicles as well as energy storage, because it has a high energy-efficiency, environmental-friendly, low cost. However, there remain several issues on improvement of materials, component, cell design, and process, to use in broad applications and to penetrate to market. This paper offers a comprehensive review on R&D status of the structure, chemistry, key materials, and cell design & manufacture for Na/$NiCl_2$ cells.

최근 화석에너지 위기와 지구환경문제 등으로 신재생 에너지에 대한 관심이 높아지고 있으며, 여기에서 발전되는 전력을 저장할 수 있는 에너지저장장치의 수요가 증가하고 있다. Na/$NiCl_2$ 전지는 에너지효율이 높고, 환경친화적이며, 저가 등 우수한 장점들로 인하여 전력 저장용뿐만 아니라 전기자동차에도 응용 가능하다. 그러나, 본격적인 상용화를 위해서는 재료 및 부품, 셀 설계 및 제조 분야에서 개선이 필요한 부분이 많이 남아 있다. 본 논문에서는 Na/$NiCl_2$ 전지의 구조, 전기화학, 핵심 재료, 셀 설계 및 제작, 응용분야에 대하여 현재까지의 개발 동향에 대하여 서술하고자 한다.

Keywords

References

  1. J. Kummer and N. Weber, U.S. Patent 3,413,150 (1968).
  2. Z. Yang, J. Zhang, M. Kintner-Meyer, X. Lu, D. Choi, J. Lemmon, and J. Liu, 'Electrochemical energy storage for green grid' Chem. Rev., 111, 3577 (2011). https://doi.org/10.1021/cr100290v
  3. X. Lu, G. Xia, J. Lemmon, and Z. Yang, 'Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives' J. Power Sources, 195, 2431 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.120
  4. C. Dustmann, 'Advances in ZEBRA batteries' J. Power Sources, 127, 85 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.039
  5. A. van Zyl, 'Review of the zebra battery system development' Solid State Ionics, 86-88, 883 (1996). https://doi.org/10.1016/0167-2738(96)00200-7
  6. R. Galloway, 'A sodium/beta alumina/nickel chloride secondary cell accelerated brief communications' J. Electrochem. Soc., 134, 256 (1987). https://doi.org/10.1149/1.2100421
  7. R. Bones, D. Teagle, S. Brooker, and F. Cullen, 'Development of a Ni,$NiCl_{2}$ positive electrode for a liquid sodium (ZEBRA) battery cell' J. Electrochem. Soc., 136, 1274 (1989). https://doi.org/10.1149/1.2096905
  8. J. Coetzer, 'A new high energy density battery system' J. Power Sources, 18, 377 (1986). https://doi.org/10.1016/0378-7753(86)80093-3
  9. J. Sudworth, 'The sodium/nickel chloride (ZEBRA) battery' J. Power Sources, 100, 149 (2001). https://doi.org/10.1016/S0378-7753(01)00891-6
  10. G. Yamaguch and K. Suzuki, 'On the structures of alkali polyaluminates' Bull. Chem. Soc. Japan, 41, 93 (1968). https://doi.org/10.1246/bcsj.41.93
  11. M. Bettman and C. Peters, 'Crystal structure of $Na_{2}O{\cdot}MgO{\cdot}5Al_{2}O_{3} $[sodium oxide-magnesia-alumina] with reference to $Na_{2}O{\cdot}5Al_{2}O_{3} $ and other isotypal compounds' J. Phys. Chem., 73, 1774 (1969). https://doi.org/10.1021/j100726a024
  12. A. Virkar, G. Miller, and R. Gordon, 'Resistivitymicrostructure relations in lithia-stabilized polycrystalline ${\beta}^{{\prime}{\prime}}$-alumina' J. Am. Ceram. Soc., 61, 250 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09292.x
  13. G. Youngblood, G. Miller, and R. Gordon, 'Relative effects of phase conversion and grain size on sodium ion conduction in polycrystalline, lithia-stabilized ${\beta$-alumina' J. Am. Ceram. Soc., 61, 86 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09238.x
  14. S. Tan, 'The dependence of the fracture stress of betaalumina on microstructural defects' J. Mater. Sci., 12, 1058 (1977). https://doi.org/10.1007/BF00540994
  15. J. Hwang, S. Bae, and M. Kim, 'NaS battery for highformat energy storage' Ceramist, 15, 45 (2012).
  16. A. Ray and E. Subbarao, 'Synthesis of sodium ${\beta$ and ${\beta}^{{\prime}{\prime}}$ alumina' Mater. Res. Bull., 10, 583 (1975). https://doi.org/10.1016/0025-5408(75)90186-5
  17. Y. Sheng, P. Sarkar, and P. Nicholson, 'The mechanical and electrical properties of $ZrO_{2}-Na{\beta}^{{\prime}{\prime}}-Al_{2}O_{3}$ composites' J. Mater. Sci., 23, 958 (1988). https://doi.org/10.1007/BF01153995
  18. P. Morgan, 'Low temperature synthetic studies of betaaluminas' Mater. Res. Bull., 11, 233 (1976). https://doi.org/10.1016/0025-5408(76)90080-5
  19. M. Zaharescu, C. Parlog, V. Stancovschi, D. Crisan, A. Braileanu, and T. Surdeanu, 'The influence of the powders synthesis method on the microstructure of lanthanum-stabilized ${\beta$-alumina ceramics' Solid State Ionics, 15, 55 (1985). https://doi.org/10.1016/0167-2738(85)90107-9
  20. S. Yamaguchi, K. Terabe, Y. Iguchi, and A. Imai, 'Formation and crystallization of beta-alumina from precursor prepared by sol-gel method using metal alkoxides' Solid State Ionics, 25, 171 (1987). https://doi.org/10.1016/0167-2738(87)90117-2
  21. T. Takahashi and K. Kuwabara, '${\beta}$-$Al_{2}O_{3}$ synthesis from m-$Al_{2}O_{3}$' J. Appl. Electrochem., 10, 291 (1980) 291. https://doi.org/10.1007/BF00617203
  22. A. Pekarsky and P.S. Nicholson, 'The relative stability of spray-frozen/freeze-dried ${\beta}^{{\prime}{\prime}}$'-$Al_{2}O_{3}$ powders' Mater. Res. Bull., 15, 1517 (1980). https://doi.org/10.1016/0025-5408(80)90111-7
  23. A. Vanzyl, M. M. Thackeray, G. K. Duncan, A. I. Kingon, and R. O. Heckroodt, 'The synthesis of beta alumina from aluminium hydroxide and oxyhydroxide precursors' Mater. Res. Bull., 28, 145 (1993). https://doi.org/10.1016/0025-5408(93)90083-P
  24. P. Parthasarathy. N. Weber, and A. Virkar, 'High temperature sodium-zinc chloride batteries with sodium beta-alumina solid electrolyte' ECS Trans. 6, 67 (2007).
  25. J. Kennedy and A. Foissy, 'Fabrication of betaalumina tubes by electrophoretic deposition from suspensions in dichloromethane' J. Electrochem. Soc., 122, 482 (1975). https://doi.org/10.1149/1.2134244
  26. R. Powers, 'The electrophoretic forming of betaalumina ceramic' J. Electrochem. Soc., 122, 490 (1975). https://doi.org/10.1149/1.2134246
  27. J. Binner and R. Stevens, 'Improvement in the mechanical properties of polycrystalline beta-alumina via the use of zirconia particles containing stabilizing oxide additions' J. Mater. Sci., 20, 3119 (1985). https://doi.org/10.1007/BF00545176
  28. D. Green, J. Mater. Sci., 'Transformation toughening and grain size control in ${\beta}^{{\prime}{\prime}}$-$Al_{2}O_{3}/ZrO_{2}$ composites', 20, 2639 (1985). https://doi.org/10.1007/BF00556096
  29. S. Heavens, 'Strength improvement in ${\beta}^{{\prime}{\prime}}$ alumina by incorporation of zirconia' J. Mater. Sci., 23, 3515 (1988). https://doi.org/10.1007/BF00540489
  30. A. Virkar, 'On some aspects of breakdown of ${\beta}^{{\prime}{\prime}}$-alumina solid electrolyte' J. Mater. Sci., 16, 1142 (1981). https://doi.org/10.1007/BF01033824
  31. H. Engstrom, J. Bates, W. Brundage, and J. Wang, 'Ionic conductivity of sodium beta-alumina' Solid State Ionics, 2, 265 (1981). https://doi.org/10.1016/0167-2738(81)90027-8
  32. J. Bates, H. Engstrom, J. Wang, B. Larson, N. Dudney, and W. Brundage, 'Composition, ion-ion correlations and conductivity of beta alumina' Solid State Ionics, 5, 159 (1981). https://doi.org/10.1016/0167-2738(81)90217-4
  33. A. Virkar, G. Tennenhouse, and R. Gordon, 'Hotpressing of $Li_{2}O$-stabilized ${\beta}^{{\prime}{\prime}}$-alumina' J. Am. Ceram. Soc., 57, 508 (1974).
  34. T. Whalen, G. Tennenhouse, C. Meyer, 'Relation of properties to microstructure in ${\beta}^{{\prime}{\prime}}$-alumina ceramic' J. Am. Ceram. Soc., 57, 497 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11401.x
  35. A. Virkar and R. Gordon, 'Fracture properties of polycrystalline lithia-stabilized ${\beta}^{{\prime}{\prime}}$-alumina' J. Am. Ceram. Soc., 60, 58 (1977). https://doi.org/10.1111/j.1151-2916.1977.tb16094.x
  36. M. Breiter, B. Dunn, and R. Powers, 'Asymmetric behavior of beta-alumina' Electrochim. Acta, 25, 613 (1980). https://doi.org/10.1016/0013-4686(80)87065-4
  37. D. Demott, 'Resistance rise in sodiumsulphur cells accelerated brief communications' J. Electrochem. Soc., 127, 2312 (1980). https://doi.org/10.1149/1.2129400
  38. A. Imai, M. Harata, 'Ionic conduction of impurity-doped beta-alumina ceramics' Jpn. J. Appl. Phys., 11, 180 (1972). https://doi.org/10.1143/JJAP.11.180
  39. M. Wright and M. Hames, British Patent Application 2,080,608 (1982).
  40. W. Bugden, P. Barrow, and J. Duncan, 'The control of the resistance rise of sodium sulphur cells' Solid State Ionics, 5, 275 (1981). https://doi.org/10.1016/0167-2738(81)90246-0
  41. L. Viswanathan, A. Virkar, 'Wetting characteristics of sodium on ${\beta}^{{\prime}{\prime}}$-alumina and on nasicon' J. Mater. Sci., 17, 753 (1982). https://doi.org/10.1007/BF00540372
  42. R. Bones, J. Coetzer, R. Galloway, and D. Teagle, 'A sodium/iron(ii) chloride cell with a beta alumina electrolyte' J. Electrochem. Soc., 134, 2379 (1987). https://doi.org/10.1149/1.2100207
  43. P. Moseley, R. Bones, D. Teagle, B. Bellamy, and R. Hawes, 'Stability of beta alumina electrolyte in sodium/ $FeCl_{2}$ (ZEBRA) cells' J. Electrochem. Soc., 136, 1361 (1989). https://doi.org/10.1149/1.2096922
  44. B. Ratnakumar, S. Distefano, and G. Halpert, 'Electrochemistry of metal chloride cathodes in sodium batteries' J. Electrochem. Soc., 137, 2991 (1990). https://doi.org/10.1149/1.2086147
  45. S. Distefano, B. Ratnakumar, and C. Bankston, 'Advanced rechargeable sodium batteries with novel cathodes' J. Power Sources, 29, 301 (1990). https://doi.org/10.1016/0378-7753(90)85005-W
  46. B. Ratnakumar, A. Attia, and G. Halpert, 'Sodium metal chloride battery research at the Jet Propulsion Laboratory (JPL)' J. Power Sources, 36, 385 (1991). https://doi.org/10.1016/0378-7753(91)87014-3
  47. J. Prakash, L. Redey, and D. Vissers, 'Morphological considerations of the nickel chloride electrodes for zebra batteries' J. Power Sources, 84, 63 (1999). https://doi.org/10.1016/S0378-7753(99)00300-6
  48. J. Prakash, L. Redey, and D. Vissers, 'Electrochemical behavior of nonporous $Ni/NiCl_{2}$ electrodes in chloroaluminate melts' J. Electrochem. Soc., 147, 502 (2000). https://doi.org/10.1149/1.1393224
  49. R. Galloway and S. Haslam, 'The ZEBRA electric vehicle battery: power and energy improvements' J. Power Sources, 80, 164 (1999). https://doi.org/10.1016/S0378-7753(98)00259-6
  50. J. Coetzer, G. Wald, and S. Orchard, J. Appl. Electrochem., 23, 790 (1993). https://doi.org/10.1007/BF00249951
  51. K. Adendorff and M. Thackeray, 'The crystal chemistry of the Na/$FeCl_{2}$ battery' J. Electrochem. Soc., 135, 2121 (1988). https://doi.org/10.1149/1.2096226
  52. S. Orchard and J. Weaving, 'Modelling of the sodiumferrous chloride electrochemical cell' J. Appl. Electrochem., 23, 1214 (1993).
  53. B. Ratnakumar, A. Attia, and G. Halpert, 'Alternate cathodes for sodium-metal chloride batteries' J. Electrochem. Soc., 138, 883 (1991). https://doi.org/10.1149/1.2085704
  54. R. Roumieu and A. Pelton, 'EMF measurements in nickel chloridesodium chloride melts with betaalumina electrolytes' J. Electrochem. Soc. 128, 50 (1981). https://doi.org/10.1149/1.2127386
  55. J. Goodenough, H. Hong, and J. Kafalas, 'Fast $Na^{+}$ -ion transport in skeleton structures' Mater. Res. Bull., 11, 203 (1976). https://doi.org/10.1016/0025-5408(76)90077-5
  56. H. Hong, 'Crystal structures and crystal chemistry in the system $Na_{1+x}Zr_{2}Si_{x}P_{3x}O_{12}$' Mater. Res. Bull., 11, 173 (1976). https://doi.org/10.1016/0025-5408(76)90073-8

Cited by

  1. The Effect of Acid Treatment Time for Ni Plating on the Joint of α-Al2O3and Ni Metal vol.27, pp.3, 2016, https://doi.org/10.7316/KHNES.2016.27.3.306