• 제목/요약/키워드: reliable controller

검색결과 209건 처리시간 0.038초

구동기 고장을 가지는 특이시스템의 신뢰 $H_\infty$ 제어 (Reliable $H_\infty$ control for descriptor systems with actuator failures)

  • 김종해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.135-138
    • /
    • 2003
  • In this paper, we provide a reliable few controller design method for descriptor systems satisfying asymptotic stability with $H_\infty$ norm bound and all actuator failures occurred within the pre-specified subset. The proper condition for the existence of a reliable $H_\infty$ controller and the controller design method are proposed by linear matrix inequality(LMI), Schur complements, and singular value decomposition. All solutions can be obtained simultaneously because the presented sufficient condition can be expressed as an LMI form.

  • PDF

고장 특이시스템의 신뢰 $H_\infty$ 제어기 설계 알고리듬 개발 (Development of reliable $H_\infty$ controller design algorithm for singular systems with failures)

  • 김종해
    • 전자공학회논문지SC
    • /
    • 제41권4호
    • /
    • pp.29-37
    • /
    • 2004
  • 본 논문에서는 구동기 고장을 가지는 시간지연 특이시스템의 신뢰 H/sub ∞/ 상태궤환 제어기 설계방법을 제안한다. 미리 설정한 영역내에서의 구동기 고장이 발생함에도 불구하고 특이시스템의 점근적 안정성(asymptotic stability)과 H/sub ∞/ 성능지수를 만족하는 신뢰 H/sub ∞/ 제어기가 존재할 조건과 제어기 설계 기법을 선형행렬부등식, 특이값 분해(singular value decomposition), 슈어 여수정리(Schur complements), 변수 치환 등에 의하여 제시한다. 제안한 충분조건은 구하려는 모든 변수의 견지에서 하나의 선형행렬부등식으로 표현되기 때문에 모든 해를 동시에 구할 수 있다는 장점이 있다. 또한, 제안한 알고리듬을 이용하면 변수불확실성과 시간지연을 가지는 특이시스템에 대한 강인 신뢰(robust reliable) H/sub ∞/ 제어기 설계문제에도 쉽게 확장됨을 보인다. 마지막으로, 제안한 알고리듬의 타당성을 수치예제를 통하여 확인한다.

신뢰성 있는 H 제어 : 선형 행렬 부등식 방법 (Reliable H Control : A Linlear Matrix Inequality Approach)

  • 이종민;김병국;김성우
    • 제어로봇시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.216-224
    • /
    • 2004
  • In this paper we address reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtainer by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via a numerical example. This paper addresses reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtained by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via numerical example.

가법적 중복적응 제어기를 이용한 신뢰성 제어 시스템에 관한 연구 (A Study on Reliable Control System Using an Additive Redundant Adaptive Controller)

  • 조영조;김광배
    • 대한전기학회논문지
    • /
    • 제39권3호
    • /
    • pp.301-311
    • /
    • 1990
  • A multiple controller structure consisting of a typical feedback controller and an additive redundant controller is proposed for enhancing the reliability of the control system. For the case where the main controller is chosen as a pole assignment controller with input/output measurements and the redundant controller as the Model Reference Adaptive Controller (MRAC) whose reference model is the closed-loop combination of the plant and the main controller, it is proven that the tracking error between the command input and plant output converges to zero under failure in one of the controllers or parameter perturbations of the plant, and further that the reliability measured by Mean Time To Failure (MTTF) is greater than that of the system with only a single main controller. A simulation Example is provided to illustrate reliable operation of the proposed control system against the controller failure.

  • PDF

증기발생기 수위제어를 위한 다중 안정화 제어기 설계 (Reliable stabilizing multi-controller for steam generator level control)

  • 권현진;박상현;이상정;함창식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1229-1232
    • /
    • 1996
  • This paper proposes the passive redundancy algorithm of multi-controller structure applicable to the steam generator level control system in the low power operating range. In the passive redundancy scheme of multi-controller structure, two suitable controllers exist if the plant is strongly stabilizable. One of the two controllers can be selected arbitrarily only if it is stable. In particular, this paper shows that the passive redundancy scheme can be efficiently used with PID and GPC control algorithms through simulation studies on the control of the steam generator.

  • PDF

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

Controller Backup and Replication for Reliable Multi-domain SDN

  • Mao, Junli;Chen, Lishui;Li, Jiacong;Ge, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4725-4747
    • /
    • 2020
  • Software defined networking (SDN) is considered to be one of the most promising paradigms in the future. To solve the scalability and performance problem that a single and centralized controller suffers from, the distributed multi-controller architecture is adopted, thus forms multi-domain SDN. In a multi-domain SDN network, it is of great importance to ensure a reliable control plane. In this paper, we focus on the reliability problem of multi-domain SDN against controller failure from perspectives of backup controller deployment and controller replication. We firstly propose a placement algorithm for backup controllers, which considers both the reliability and the cost factors. Then a controller replication mechanism based on shared data storage is proposed to solve the inconsistency between the active and standby controllers. We also propose a shared data storage layout method that considers both reliability and performance. Besides, a fault recovery and repair process is designed based on the controller backup and shared data storage mechanism. Simulations show that our approach can recover and repair controller failure. Evaluation results also show that the proposed backup controller placement approach is more effective than other methods.

Reliable $H_{\infty}$ Controller Design for a Class of Uncertain Linear Systems with Actuator Failures

  • Dai, Shi-Lu;Zhao, Jun
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.954-959
    • /
    • 2008
  • This paper is concerned with the reliable $H_{\infty}$ controller design problem for uncertain linear systems against actuator failures. In the design, the $H_{\infty}$ performance of the closed-loop system is optimized during normal operation(without failures) while the system satisfies a prescribed $H_{\infty}$ performance level in the case of actuator failures. Single and parameter-dependent Lyapunov function approaches are applied in designing suboptimal reliable $H_{\infty}$ controllers. Simulation studies are presented to demonstrate the effectiveness of the proposed design procedures.

제곱합 접근법에 의한 비선형시스템의 신뢰성제어 (A Reliable Control of Nonlinear Systems via a Sum of Squares Approach)

  • 류석환
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.121-129
    • /
    • 2012
  • This paper deals with a design of reliable state feedback controllers for continuous time polynomial systems with actuator failures. The goal is to find an asymptotically stabilizing controller such that the closed loop system achieves the prescribed decay rate in the actuator failure cases. Based on a sum of squares (SOS) approach, a design method for reliable nonlinear controller is presented. In order to demonstrate our design method, a numerical example is shown.

Design of Speed Controller for an Induction Motor with Inertia Variation

  • Sin E. C.;Kong B. G.;Kim J. S.;Yoo J. Y.;Park T. S.;Lee J. H.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.374-379
    • /
    • 2001
  • In this paper, a novel design algorithm of speed controller for an Induction motor with the inertia variation is proposed. The main contribution of our work is a very robust, reliable and stable procedure for setting of the PI gains against the specified range of the inertia variation of an induction motor using Kharitonovs robust control theory. Therefore, the basic segment of controller design, the variation of induction motor inertia is estimated by the RLS (Recursive least square) method. PI based speed controller is widely used in industrial application for its simple structure and reliable performance. In addition the Kharitonov robust control theory is used for verification stability of closed-loop transfer function. The performance of this proposed design method is proved by digital simulation and experimentation with high performance DSP based induction motor driving system.

  • PDF