• Title/Summary/Keyword: reinforcing effect

Search Result 901, Processing Time 0.025 seconds

Dependence Potential of Propofol: Behavioral Pharmacology in Rodents

  • Cha, Hye-Jin;Cha, Ji-Hun;Cho, Hea-Young;Chung, Eun-Yong;Kwon, Kyoung-Jin;Lee, Jun-Yeon;Jeong, Ho-Sang;Kim, Hye-Soo;Chung, Hye-Joo;Kim, Eun-Jung
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.234-238
    • /
    • 2012
  • Propofol is an anesthetic commonly used to provide sedation or to induce and maintain an anesthetic stated. However, there are reports which indicate propofol may cause psychological dependence or be abused. In the present study, we used various behavioral tests including climbing test, jumping test, conditioned place preference, and self-administration test to assess the dependence potential and abuse liability of propofol compared to a positive control (methamphetamine) or a negative control (saline or intralipid). Among the tests, the conditioned place preference test was conducted with a biased method, and the selfadministration test was performed under a fixed ratio (FR) 1 schedule, 1 h per session. No difference was found in the climbing test and jumping test, but propofol (30 mg/kg, i.p.) increased the rewarding effect in the conditioned place preference test, and it showed a positive reinforcing effect compared to the vehicle. These results indicate that propofol tends to show psychological dependence rather than physical dependence, and it seems not to be related with dopaminergic system.

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

The Study of Saamchimbeop's Method of Reinforcement and Reduction (사암침법(舍巖鍼法)의 보사수기법(補瀉手技法)에 관한 연구(硏究))

  • Ahn, Jeong-Ran;Lee, In-Seon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.2
    • /
    • pp.113-123
    • /
    • 2009
  • Objectives : The purpose of this study is what Saamchimbeop's method of reinforcement and reduction. Methods : 1. We reffered to the Bo-Sa method of DongeuiBo-gam(東醫寶鑑), Uihakim-mun(醫學入門), Uihakjeong-jeon(醫學正傳), Chimgugyeongheom-bang(鍼灸經驗方), Biaoyou-fu(標幽賦) in Cimgudaeseong(鍼灸大成), Nei-Jing(內經). 2. We make a conjecture that Zheng(正), Ying(迎), Sui(隨), Xie(斜) Yingzheng(迎正), Duo(奪), Zhenghuoxie(正或斜), Wen(溫), Liang(凉), JongYang-Inyin (從陽引陰) in Saamchimbeop are another expression of method of reinforcement and reduction and compared with the method of reinforcement and reduction of DongeuiBo-gam(東醫寶鑑), Uihakim-mun(醫學入門), Uihakjeong-jeon(醫學正傳), Chimgugyeongheom-bang(鍼灸經驗方), Biaoyou-fu(標幽賦) in Cimgudaeseong(鍼灸大成), Nei-Jing(內經). Results : 1. Zheng(正) and Xie(斜) are angle of acupuncture manipulation. The descending inserting of Yang-meridian is acupuncture manipulation for the Tonifying effect(補法) and the direct inserting of Yin-meridian is the Dispersing effect(瀉法). 2. JongYang-Inyin(從陽引陰) is the contralateral acupuncture. 3. Ying(迎) and Sui(隨) in the Saamchimbeop are same meaning the method of reinforcement and reduction(補瀉手技法). 4. Saamchimbeop's the final aim is the Wen-Liang(溫凉) according to the disease strong and weak in the Ohaeng-seo of Saam-acupuncture. Conclusions : Saamchimbeop's method of reinforcement and reduction is reinforcement-reduction by lifting and thrusting the needle, breathing reinforcement-reduction method, reinforcing and reducing achieved by rapid and slow insertion and withdrawing of the needles, reinforcement and reduction by opening and closing of needles with contralateral acupuncture by Yin-meridian or Yang-meridian. Saamchimbeop's the final aim is the Wen-Liang(溫凉) according to the disease strong and weak.

REINFORCEMENT OF ACRYLIC RESIN WITH METAL WIRE (금속 wire의 아크릴릭 레진 보강효과에 관한 연구)

  • Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Chang-Sup
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.823-832
    • /
    • 1996
  • The purpose of this study was to assess the effect of 1) the diameter(0.7,1.0,1.2mm) and number(1,2,3) of commonly available orthodontic metal wires embedded in self-curing orthodontic acrylic resin specimens($64{\times}10{\times}3mm$) and 2) the use of chemical adhesive system(Silicoater, Metalprimer) to prevent slipping at the interface between the resin and the metal wire on reinforcement by using three-point bending test. From this study, the following results were obtained. 1. No statistically significant difference was found among the transverse strengths for the control without reinforcement, one 0.7mm wire, two 0.7mm wires, three 0.7mm wires, and one 1.0mm wire groups(P>.05). 2. In the groups with 1.0 or 1.2mm wires, the transverse strength increased in proportion to the increase of number of wires(P<.05). 3. In the groups with 0.7 or 1.0mm wires, neither of Silicoater and Netalprimer increased the transverse strength significantly(P>.05). 4. No statistically significant difference was found in transverse strength between Silicoater groups and Metalprimer groups with same diameter of wires(P.>05). From these result, it is concluded that diameter of wires is a primary considering factor to reinforce the acrylic resin effectively and, when this requirement is satisfied, increased number of wires or chemical adhesive systems can be expected to produce the additional reinforcing effect.

  • PDF

A laboratory and numerical study on the effect of geogrid-box method on bearing capacity of rock-soil slopes

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.345-354
    • /
    • 2018
  • Currently, layered geogrid method (LGM) is the commonly practiced technique for reinforcement of slopes. In this paper the geogrid-box method (GBM) is introduced as a new approach for reinforcement of rock-soil slopes. To achieve the objectives of this study, a laboratory setup was designed and the slopes without reinforcements and reinforced with LGM and GBM were tested under the loading of a circular footing. The effect of vertical spacing between geogrid layers and box thickness on normalized bearing capacity and failure mechanism of slopes was investigated. A series of 3D finite element analysis were also performed using ABAQUS software to supplement the results of the model tests. The results indicated that the load-settlement behavior and the ultimate bearing capacity of footing can be significantly improved by the inclusion of reinforcing geogrid in the soil. It was found that for the slopes reinforced with GBM, the displacement contours are widely distributed in the rock-soil mass underneath the footing in greater width and depth than that in the reinforced slope with LGM, which in turn results in higher bearing capacity. It was also established that by reducing the thickness of geogrid-boxes, the distribution and depth of displacement contours increases and a longer failure surface is developed, which suggests the enhanced bearing capacity of the slope. Based on the studied designs, the ultimate bearing capacity of the GBM-reinforced slope was found to be 11.16% higher than that of the slope reinforced with LGM. The results also indicated that, reinforcement of rock-soil slopes using GBM causes an improvement in the ultimate bearing capacity as high as 24.8 times more than that of the unreinforced slope.

An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures (토목섬유 보강 구조물의 응력 및 거동 해석)

  • 고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF

Flexural and Tensile Performance of Strain-Hardening Cement Composite with Synthetic Fibers (합성섬유를 사용한 변형경화형 시멘트 복합체의 휨 및 인장성능)

  • Kim, Sun-Woo;Lee, Min-Jung;Jang, Yong-Heon;Jang, Gwang-Soo;Song, Seon-Hwa;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.925-928
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. To apply SHCC to structural member, SHCC must have economical efficiency and workability as well as own excellent tensile performance. For these purposes, four-point bending and direct tensile tests on SHCC with only hybrid synthetic fibers, total fiber volume fraction, $V_f$, is 1.5%, are carried out. The research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA) and Polyethylene (PE) fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Also, effect of hybrid type and water-cement ratio on the behavior of SHCC was evaluated in this paper.

  • PDF

The Impact of Child Care Type on Infant's Developmental Outcome: Focusing on the Care Type of at Home Nurturing and Daycare Center (영아기 돌봄유형이 영아발달수준에 미치는 영향에 관한 연구: 가정내 돌봄과 어린이집 돌봄의 비교를 중심으로)

  • Choi, Sang Seol
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.1
    • /
    • pp.53-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of child care type on infant's developmental outcomes assessed by K-ASQ, focusing on the child-centric role of nurture policy. For this, this study categorized child care type into types including home nurturing, child care center, and subtypes of each category. The findings of multiple regression analysis using the first-third wave data of Panel Study of Korean Children(PSKC) are as follows. First, the child care center experience had rather positive effect on the development of all abilities in the infants comparing to home nurturing. Second, the time of attending child care center was differently related to the development of motor, communication, and personal-social skill in infanthood. Finally, the accreditation of child care showed a difference only in terms of social development of infants. In conclusion, even if the experience of using child care center has positive impact on infant's developmental level, it is still in need of improving service quality such as reinforcing accreditation system.

Non-linear Dynamic Analysis of Reinforced Concrete Slabs Subjected to Explosive Loading Using an Orthotropic Concrete Constitutive Model (이등방성 콘크리트 모델을 이용한 폭발하중을 받는 철근콘크리트 슬래브의 비선형 동적해석)

  • Lee, MinJoo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.409-416
    • /
    • 2019
  • An improved numerical model for non-linear analysis of reinforced concrete (RC) slabs subjected to blast loading is proposed. This approach considers a strain rate dependent orthotropic constitutive model that directly determines the stress state using the stress-strain relation acquired from the data obtained using the biaxial strength envelope. Moreover, the bond-slip between concrete and reinforcing steel is gradually enlarged after the occurrence of cracks and is concentrated in the plastic hinge region. The bond-slip model is introduced to consider the crack direction of the concrete under a biaxial stress state. Correlation studies between the numerical analysis and the experimental results were performed to evaluate the analytical model. The results show that the proposed model can effectively be used in dynamic analyses of reinforced concrete slab members subjected to explosive loading. Moreover, it was determined that it is important to consider biaxial behavior in the material model and the bond-slip effect.

Corrosion Protection of Rebars Using High Durability Polymer Cementitious Materials for Environmental Load Reduction (환경부하저감형 고내구성 폴리머 시멘트계 재료를 이용한 철근 부식저감기술)

  • Kim, Wan-Ki;Chung, Seung-Jin
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.131-137
    • /
    • 2010
  • The building industry must aim at high-durability and sustainability. A holistic life cycle based approach is recommended to reduce the environmental load. In recent years, technical innovations in the construction industry have advanced to a great extent, and caused the active research and development of high-performance and multifunctional construction materials. Nowadays, various polymer powders have been commercialized to manufacture construction materials in the form of prepackaged-type products, which have rapidly been developed for lack of skilled workmen in construction sites. Recently, terpolymer powders of improved quality have been developed and commercialized as cement modifiers. And, hydrocalumite is a material that can adsorb the chloride ions (Cl-) causing the corrosion of reinforcing bars and liberate the nitrite ions (NO2-) inhibiting the corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. The purpose of this study is to ascertain the self-corrosion inhibition function of polymer-modified mortars using redispersible powders with hydrocalumite. Polymer-modified mortars using VA/E/MMA and VAE redispersible powders are prepared with various calumite contents and polymer-binder ratios, and tested for chloride ion penetration depth, corrosion inhibition. As a result, regardless of the polymer-binder ratio, the replacement of ordinary portland cement with hydrocalumite has a marked effect on the corrosion-inhibiting property of the polymer-modified mortars. Anti-corrosion effect of polymer-modified mortars using VA/E/MMA terpolymer powder with hydrocalumite is higher than that of VAE copolymer powder.