• Title/Summary/Keyword: regular minimal set

Search Result 17, Processing Time 0.022 seconds

REGULAR HOMOMORPHISMS IN TRANSFORMATION GROUPS

  • Yu, Jung Ok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.49-59
    • /
    • 2001
  • In this paper, we introduce an extended notion of regular homomorphism of minimal sets by considering a certain subgroup of the group of automorphisms of a universal minimal transfomation group.

  • PDF

MINIMAL P-SPACES

  • Arya, S.P.;Bhamini, M.P.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 1987
  • Minimal s-Urysohn and minimal s-regular spaces are studied. An s-Urysohn (respectively, s-regular) space (X, $\mathfrak{T}$) is said to be minimal s-Urysohn (respectively, minimal s-regular) if for no topology $\mathfrak{T}^{\prime}$ on X which is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) is s-Urysohn (respectively s-regular). Several characterizations and other related properties of these classes of spaces have been obtained. The present paper is a study of minimal P-spaces where P refers to the property of being an s-Urysohn space or an s-regular space. A P-space (X, $\mathfrak{T}$) is said to be minimal P if for no topology $\mathfrak{T}^{\prime}$ on X such that $\mathfrak{T}^{\prime}$ is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) has the property P. A space X is said to be s-Urysohn [2] if for any two distinct points x and y of X there exist semi-open set U and V containing x and y respectively such that $clU{\bigcap}clV={\phi}$, where clU denotes the closure of U. A space X is said to be s-regular [6] if for any point x and a closed set F not containing x there exist disjoint semi-open sets U and V such that $x{\in}U$ and $F{\subseteq}V$. Throughout the paper the spaces are assumed to be Hausdorff.

  • PDF

GENERALIZED REGULAR HOMOMORPHISM

  • Yu, Jung Ok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.103-111
    • /
    • 1999
  • In this paper, we introduce a generalized regular homomorphism as the extending notion of the regular homomorphism.

  • PDF

CYCLES THROUGH A GIVEN SET OF VERTICES IN REGULAR MULTIPARTITE TOURNAMENTS

  • Volkmann, Lutz;Winzen, Stefan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.683-695
    • /
    • 2007
  • A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. In a recent article, the authors proved that a regular c-partite tournament with $r{\geq}2$ vertices in each partite set contains a cycle with exactly r-1 vertices from each partite set, with exception of the case that c=4 and r=2. Here we will examine the existence of cycles with r-2 vertices from each partite set in regular multipartite tournaments where the r-2 vertices are chosen arbitrarily. Let D be a regular c-partite tournament and let $X{\subseteq}V(D)$ be an arbitrary set with exactly 2 vertices of each partite set. For all $c{\geq}4$ we will determine the minimal value g(c) such that D-X is Hamiltonian for every regular multipartite tournament with $r{\geq}g(c)$.

r-HOMOMORPHISMS IN TRANSFORMATION GROUPS

  • Yu, Jung Ok;Shin, Se Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.555-562
    • /
    • 2008
  • In this paper, it will be given a necessary and sufficient condition for a function to be an r-homomorphism in connection with the subgroups of the automorphism group of a universal minimal set.

  • PDF

QUASI $O-z$-SPACES

  • Kim, Chang-Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.117-124
    • /
    • 1993
  • In this paper, we introduce a concept of quasi $O_{z}$ -spaces which generalizes that of $O_{z}$ -spaces. Indeed, a completely regular space X is a quasi $O_{z}$ -space if for any regular closed set A in X, there is a zero-set Z in X with A = c $l_{x}$ (in $t_{x}$ (Z)). We then show that X is a quasi $O_{z}$ -space iff every open subset of X is $Z^{#}$-embedded and that X is a quasi $O_{z}$ -spaces are left fitting with respect to covering maps. Observing that a quasi $O_{z}$ -space is an extremally disconnected iff it is a cloz-space, the minimal extremally disconnected cover, basically disconnected cover, quasi F-cover, and cloz-cover of a quasi $O_{z}$ -space X are all equivalent. Finally it is shown that a compactification Y of a quasi $O_{z}$ -space X is again a quasi $O_{z}$ -space iff X is $Z^{#}$-embedded in Y. For the terminology, we refer to [6].[6].

  • PDF

Fine-Grained and Traceable Key Delegation for Ciphertext-Policy Attribute-Based Encryption

  • Du, Jiajie;HelIl, Nurmamat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3274-3297
    • /
    • 2021
  • Permission delegation is an important research issue in access control. It allows a user to delegate some of his permissions to others to reduce his workload, or enables others to complete some tasks on his behalf when he is unavailable to do so. As an ideal solution for controlling read access on outsourced data objects on the cloud, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) has attracted much attention. Some existing CP-ABE schemes handle the read permission delegation through the delegation of the user's private key to others. Still, these schemes lack the further consideration of granularity and traceability of the permission delegation. To this end, this article proposes a flexible and fine-grained CP-ABE key delegation approach that supports white-box traceability. In this approach, the key delegator first examines the relations between the data objects, read permission thereof that he intends to delegate, and the attributes associated with the access policies of these data objects. Then he chooses a minimal attribute set from his attributes according to the principle of least privilege. He constructs the delegation key with the minimal attribute set. Thus, we can achieve the shortest delegation key and minimize the time of key delegation under the premise of guaranteeing the delegator's access control requirement. The Key Generation Center (KGC) then embeds the delegatee's identity into the key to trace the route of the delegation key. Our approach prevents the delegatee from combining his existing key with the new delegation key to access unauthorized data objects. Theoretical analysis and test results show that our approach helps the KGC transfer some of its burdensome key generation tasks to regular users (delegators) to accommodate more users.