• 제목/요약/키워드: regular *-semigroups

검색결과 71건 처리시간 0.02초

ON THE LEFT REGULAR po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • 제6권2호
    • /
    • pp.149-154
    • /
    • 1998
  • We consider the ordered ${\Gamma}$-semigroups in which $x{\gamma}x(x{\in}M,{\gamma}{\in}{\Gamma})$ are left elements. We show that this $po-{\Gamma}$-semigroup is left regular if and only if M is a union of left simple sub-${\Gamma}$-semigroups of M.

  • PDF

Intuitionistic Fuzzy Bi-ideals of Ordered Semigroups

  • Jun, Young Bae
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.527-537
    • /
    • 2005
  • The intuitionistic fuzzification of the notion of a bi-ideal in ordered semigroups is considered. In terms of intuitionistic fuzzy set, conditions for an ordered semigroup to be completely regular is provided. Characterizations of intuitionistic fuzzy bi-ideals in ordered semigroups are given. Using a collection of bi-ideals with additional conditions, an intuitionistic fuzzy bi-ideal is constructed. Natural equivalence relations on the set of all intuitionistic fuzzy bi-ideals of an ordered semigroup are investigated.

  • PDF

GENERALIZED BIPOLAR FUZZY INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • Ibrar, Muhammad;Khan, Asghar;Abbas, Fatima
    • Honam Mathematical Journal
    • /
    • 제41권2호
    • /
    • pp.285-300
    • /
    • 2019
  • This research focuses on the characterization of an ordered semigroups (OS) in the frame work of generalized bipolar fuzzy interior ideals (BFII). Different classes namely regular, intra-regular, simple and semi-simple ordered semigroups were characterized in term of $({\alpha},{\beta})$-BFII (resp $({\alpha},{\beta})$-bipolar fuzzy ideals (BFI)). It has been proved that the notion of $({\in},{\in}{\gamma}q)$-BFII and $({\in},{\in}{\gamma}q)$-BFI overlap in semi-simple, regular and intra-regular ordered semigroups. The upper and lower part of $({\in},{\in}{\gamma}q)$-BFII are discussed.

GENERALIZED TOEPLITZ ALGEBRAS OF SEMIGROUPS

  • Jang, Sun-Young
    • East Asian mathematical journal
    • /
    • 제21권2호
    • /
    • pp.151-161
    • /
    • 2005
  • We analyze the structure of $C^*-algebras$ generated by left regular isometric representations of semigroups.

  • PDF

Generalized Transformation Semigroups Whose Sets of Quasi-ideals and Bi-ideals Coincide

  • Chinram, Ronnason
    • Kyungpook Mathematical Journal
    • /
    • 제45권2호
    • /
    • pp.161-166
    • /
    • 2005
  • Let BQ be the class of all semigroups whose bi-ideals are quasi-ideals. It is known that regular semigroups, right [left] 0-simple semigroups and right [left] 0-simple semigroups belong to BQ. Every zero semigroup is clearly a member of this class. In this paper, we characterize when generalized full transformation semigroups and generalized Baer-Levi semigroups are in BQ in terms of the cardinalities of sets.

  • PDF

ON THE SEMIGROUP OF PARTITION-PRESERVING TRANSFORMATIONS WHOSE CHARACTERS ARE BIJECTIVE

  • Mosarof Sarkar;Shubh N. Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • 제61권1호
    • /
    • pp.117-133
    • /
    • 2024
  • Let 𝓟 = {Xi : i ∈ I} be a partition of a set X. We say that a transformation f : X → X preserves 𝓟 if for every Xi ∈ 𝓟, there exists Xj ∈ 𝓟 such that Xif ⊆ Xj. Consider the semigroup 𝓑(X, 𝓟) of all transformations f of X such that f preserves 𝓟 and the character (map) χ(f): I → I defined by iχ(f) = j whenever Xif ⊆ Xj is bijective. We describe Green's relations on 𝓑(X, 𝓟), and prove that 𝒟 = 𝒥 on 𝓑(X, 𝓟) if 𝓟 is finite. We give a necessary and sufficient condition for 𝒟 = 𝒥 on 𝓑(X, 𝓟). We characterize unit-regular elements in 𝓑(X, 𝓟), and determine when 𝓑(X, 𝓟) is a unit-regular semigroup. We alternatively prove that 𝓑(X, 𝓟) is a regular semigroup. We end the paper with a conjecture.

CAYLEY-SYMMETRIC SEMIGROUPS

  • Zhu, Yongwen
    • Bulletin of the Korean Mathematical Society
    • /
    • 제52권2호
    • /
    • pp.409-419
    • /
    • 2015
  • The concept of Cayley-symmetric semigroups is introduced, and several equivalent conditions of a Cayley-symmetric semigroup are given so that an open problem proposed by Zhu [19] is resolved generally. Furthermore, it is proved that a strong semilattice of self-decomposable semigroups $S_{\alpha}$ is Cayley-symmetric if and only if each $S_{\alpha}$ is Cayley-symmetric. This enables us to present more Cayley-symmetric semi-groups, which would be non-regular. This result extends the main result of Wang [14], which stated that a regular semigroup is Cayley-symmetric if and only if it is a Clifford semigroup. In addition, we discuss Cayley-symmetry of Rees matrix semigroups over a semigroup or over a 0-semigroup.

ANTI-HYBRID INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • LINESAWAT, KRITTIKA;LEKKOKSUNG, SOMSAK;LEKKOKSUNG, NAREUPANAT
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.769-784
    • /
    • 2022
  • The main theme of this present paper is to study ordered semigroups in the context of anti-hybrid interior ideals. The notion of anti-hybrid interior ideals in ordered semigroups is introduced. We prove that the concepts of ideals and interior coincide in some particular classes of ordered semigroups; regular, intra-regular, and semisimple. Finally, the characterization of semisimple ordered semigroups in terms of anti-hybrid interior ideals is considered.