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ON THE SEMIGROUP OF PARTITION-PRESERVING

TRANSFORMATIONS WHOSE CHARACTERS ARE

BIJECTIVE

Mosarof Sarkar and Shubh N. Singh

Abstract. Let P = {Xi : i ∈ I} be a partition of a set X. We say

that a transformation f : X → X preserves P if for every Xi ∈ P, there

exists Xj ∈ P such that Xif ⊆ Xj . Consider the semigroup B(X,P)
of all transformations f of X such that f preserves P and the character

(map) χ(f) : I → I defined by iχ(f) = j whenever Xif ⊆ Xj is bijective.

We describe Green’s relations on B(X,P), and prove that D = J on
B(X,P) if P is finite. We give a necessary and sufficient condition for D =

J on B(X,P). We characterize unit-regular elements in B(X,P), and

determine when B(X,P) is a unit-regular semigroup. We alternatively
prove that B(X,P) is a regular semigroup. We end the paper with a

conjecture.

1. Introduction

Throughout this paper, let X be a nonempty set, let P = {Xi : i ∈ I} be a
partition of X, and let E be the equivalence relation on X corresponding to the
partition P. Denote by T (X) (resp. Sym(X)) the full transformation semigroup
(resp. symmetric group) on X. The semigroup T (X) and its subsemigroups
play a vital role in semigroup theory, since every semigroup can be embedded
in some T (Z) (cf. [13, Theorem 1.1.2]). This famous result is analogous to
Cayley’s theorem for groups, which states that every group can be embedded
in some Sym(X).

We say that any transformation f : X → X preserves the partition P if for
every Xi ∈ P, there exists Xj ∈ P such that Xif ⊆ Xj . In 1994, Pei [14] first
studied the subsemigroup T (X,P) of T (X) consisting of all transformations
that preserve the partition P. Using symbols,

T (X,P) = {f ∈ T (X) : (∀Xi ∈ P) (∃Xj ∈ P) Xif ⊆ Xj}
= {f ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ E =⇒ (xf, yf) ∈ E}.
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In that paper, Pei [14, Theorem 2.8] proved that T (X,P) is exactly the semi-
group of all continuous selfmaps on X with respect to the topology having P
as a basis. The semigroup T (X,P) and its subsemigroups have been exten-
sively studied by a number of authors (see [1, 2, 10, 11, 15–18, 21, 23] for some
references).

In what follows, the letter I denotes the index set of the partition P. Let
f ∈ T (X,P). The character (map) of f is the selfmap χ(f) : I → I defined
by iχ(f) = j whenever Xif ⊆ Xj . For finite X, the character χ(f) with the
notation f̄ has been studied by Araújo et al. [1], Dolinka and East [8], and
Dolinka et al. [9]. For arbitrary X, the character χ(f) was first considered
by Purisang and Rakbud [19, p. 220]. The character χ(f) of f has also been
received attention (see [20–23]).

Using the notion of character χ(f), Purisang and Rakbud [19] introduced
the following subsemigroup of T (X,P):

B(X,P) = {f ∈ T (X,P) : χ(f) ∈ Sym(I)}.

In that paper, the authors [19, Theorem 3.5(1)] proved that B(X,P) is a regular
semigroup. The semigroup B(X,P) generalizes both T (X) and Sym(X) in the
sense that B(X,P) = T (X) if |P| = 1, and B(X,P) = Sym(X) if P consists
of singleton sets. When P is finite, the authors [21, Corollary 3.5] proved that
B(X,P) = Σ(X,P) = TE∗(X), where

Σ(X,P) = {f ∈ T (X,P) : Xf ∩Xi ̸= ∅ ∀Xi ∈ P},
TE∗(X) = {f ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ E =⇒ (xf, yf) ∈ E}.

For arbitrary X, both the semigroups Σ(X,P) and TE∗(X) have been studied
(see [1, 2, 21–23] and [5–7, 24], respectively). In particular, the authors [1, 2]
considered the semigroup Σ(X,P) for finite X to calculate the rank of the
finite semigroup T (X,P).

This paper is motivated by various results on T (X,P) and its two subsemi-
groups Σ(X,P) and TE∗(X). The rest of the paper is organized as follows. In
the next section, we define concepts, introduce notation, and recall some results
needed in this paper. In Section 3, we give an alternative proof of Theorem
3.5(1) in [19], which ascertain that the semigroup B(X,P) is regular. We next
describe unit-regular elements in B(X,P), and determine when B(X,P) is a
unit-regular semigroup. In Section 4, we describe Green’s relations on B(X,P).
We also give a necessary and sufficient condition for D = J on B(X,P).

2. Preliminaries and notation

Let X be a nonempty set. The cardinality of X is denoted by |X|, and
the identity map on X is denoted by idX . For any sets A and B, let A \ B
denote the set {x ∈ A : x /∈ B}. A partition of X is a collection of pairwise
disjoint nonempty subsets, called blocks, whose union is X. A trivial partition
is a partition that has only singleton blocks or a single block. A partition
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is uniform if all its blocks have the same cardinality. A transversal of an
equivalence relation ρ on X is a subset of X that contains exactly one element
from each ρ-class. The set of all positive integers is denoted by N. For n ∈ N,
let [n] denote the set {1, . . . , n}.

We compose mappings from left to right and denote their composition by
juxtaposition. Let f : X → Y be a mapping. We denote by xf the image of
an element x ∈ X under f . For any A ⊆ X (resp. B ⊆ Y ), we denote by Af
(resp. Bf−1) the set {af : a ∈ A} (resp. {x ∈ X : xf ∈ B}). Furthermore, if
B = {b}, then we write bf−1 instead of {b}f−1. Let d(f) = |Y \ Xf |. The
kernel of f , denoted by ker(f), is an equivalence relation on X defined by
ker(f) = {(a, b) ∈ X ×X : af = bf}. The symbol π(f) denotes the partition
of X induced by ker(f), and the symbol Tf denotes any transversal of ker(f).
Note that |X \ Tf | is independent of the choice of transversal of ker(f) (cf.
[12, p. 1356]). Set c(f) = |X \ Tf |. Let g : X → X be a mapping. For any
nonempty subset A of the domain of g, the restriction of g to A is the mapping
g↾A : A→ X defined by x(g↾A) = xg for all x ∈ A. Moreover if B is a subset of
the codomain of g such that Ag ⊆ B, then we reserve the same notation g↾A
for the mapping from A to B that assigns xg to each x ∈ A.

Let S be a semigroup and a ∈ S. We say that a is regular in S if there exists
b ∈ S such that aba = a. The set of all regular elements in S is denoted by
reg(S). If reg(S) = S, then S is a regular semigroup. In addition, let S contains
the identity. Then the set of all unit elements of S is denoted by U(S). We say
that a is unit-regular in S if there exists u ∈ U(S) such that aua = a. The set
of all unit-regular elements in S is denoted by ureg(S). If ureg(S) = S, then S
is a unit-regular semigroup. Note that U(T (X)) = Sym(X). It is evident that
U(T (X,P)) = T (X,P) ∩ Sym(X) and U(B(X,P)) = U(T (X,P)).

Let S be a semigroup and a, b ∈ S. The Green’s relations L,R,H,D, and
J on S defined as follows: (a, b) ∈ L if S1a = S1b, (a, b) ∈ R if aS1 = bS1,
H = L ∩ R, D = L ◦ R, and (a, b) ∈ J if S1aS1 = S1bS1, where S1 is
the semigroup S with an identity adjoined (if necessary). If K is any Green’s
relation on S, then the equivalence class of a with respect to K is denoted byKa.
Since L,R, and J are defined in terms of ideals, which are partially ordered by
inclusion, we have induced partial orders on the sets of the equivalence classes
of L,R, and J [13, p. 47, (2.1.3)]: La ≤ Lb if S

1a ⊆ S1b, Ra ≤ Rb if aS
1 ⊆ bS1,

and Ja ≤ Jb if S1aS1 ⊆ S1bS1.
We refer the reader to [13] for any undefined concepts, notation, and results

of semigroup theory. We end this section by stating a list of preliminary results.

Lemma 2.1 ([23, Lemma 3.1]). Let f : X → Y and g : Y → X be mappings.
If fgf = f , then X(fg) is a transversal of the equivalence relation ker(f).

Lemma 2.2 ([19, Lemma 2.3]). We have χ(fg) = χ(f)χ(g) for all f, g ∈
T (X,P).
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Lemma 2.3 ([21, Lemma 5.2]). Let P = {Xi : i ∈ I} be a partition of X
and f ∈ T (X). Then f ∈ T (X,P) if and only if there exists a unique family
B(f, I) := {f↾Xi

: i ∈ I} such that the codomain of each f↾Xi
is a block of P.

Theorem 2.4 ([21, Theorem 5.8]). Let P = {Xi : i ∈ I} be a partition of X
and f ∈ T (X,P). Then f is bijective if and only if

(i) every mapping of B(f, I) is bijective;
(ii) χ(f) ∈ Sym(I).

3. Unit-regularity for B(X,P)

In this section, we describe unit-regular elements in B(X,P) and then give a
necessary and sufficient condition for B(X,P) to be unit-regular. We begin by
giving an alternative proof of the following proposition which was first appeared
in [19, Theorem 3.5(1)].

Proposition 3.1. The semigroup B(X,P) is regular.

Proof. Let f ∈ B(X,P), and write (χ(f))−1 = α. Fix x′ ∈ xf−1 for each
x ∈ Xf , and also fix xi ∈ Xi for each i ∈ I. Define g ∈ T (X) as follows: Given
x ∈ X, there exists i ∈ I such that x ∈ Xi; we let

xg =

{
x′ if x ∈ Xi ∩Xf,
xiα if x ∈ Xi \Xf.

It is easy to see that g ∈ T (X,P) and χ(g) = α, so g ∈ B(X,P). To prove
fgf = f , let x ∈ X and write xf = y. Then x ∈ Xi for some i ∈ I. Therefore,
since y′ ∈ yf−1, we obtain x(fgf) = (xf)gf = (yg)f = y′f = y = xf , which
yields fgf = f . Hence f ∈ reg(B(X,P)) as required. □

The following theorem describes unit-regular elements in B(X,P).

Theorem 3.2. Let f ∈ B(X,P). Then f ∈ ureg(B(X,P)) if and only if
c(f↾Xi

) = d(f↾Xi
) for all i ∈ I.

Proof. Suppose that f ∈ ureg(B(X,P)). Then there exists g ∈ U(B(X,P))
such that fgf = f . This gives χ(f)χ(g)χ(f) = χ(f) by Lemma 2.2. Therefore
χ(g) = (χ(f))−1, since χ(f), χ(g) ∈ Sym(I). Write χ(f) = α.

To prove the desired result, let i ∈ I and write iα = j. Then jχ(g) = i.
Therefore, since fgf = f , it is easy to see that f↾Xi

g↾Xj
f↾Xi

= f↾Xi
, where

f↾Xi
: Xi → Xj (resp. g↾Xj

: Xj → Xi) is a map of B(f, I) (resp. B(g, I)). It

follows from Lemma 2.1 that Tf↾Xi
:= Xi(f↾Xi

g↾Xj
) is a transversal of ker(f↾Xi

).

Since g ∈ U(T (X,P)), it follows from Theorem 2.4 that every map of B(g, I)
is bijective. Therefore

(Xj \Xif↾Xi
)g↾Xj

= Xjg↾Xj
\Xi(f↾Xi

g↾Xj
) = Xi \ Tf↾Xi

,

which yields |Xj \ Xif↾Xi
| = |Xi \ Tf↾Xi

|. Hence c(f↾Xi
) = |Xi \ Tf↾Xi

| =

|Xj \Xif↾Xi
| = d(f↾Xi

).
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Conversely, suppose that c(f↾Xi
) = d(f↾Xi

) for all i ∈ I. To prove f ∈
ureg(B(X,P)), we shall construct g ∈ U(B(X,P)) such that fgf = f . For
this, let i ∈ I and write i(χ(f))−1 = j. Let Tf↾Xj

be a transversal of ker(f↾Xj
),

where f↾Xj
: Xj → Xi is a map of B(f, I). It is easy to see that the map

φi : Xjf↾Xj
→ Tf↾Xj

defined by xφi = x′ whenever x(f↾Xj
)−1 ∩ Tf↾Xj

= {x′}
is bijective. Since |Xi \ Xjf↾Xj

| = |Xj \ Tf↾Xj
| by hypothesis, there exists a

bijection ψi : Xi \Xjf↾Xj
→ Xj \ Tf↾Xj

. Define hi : Xi → Xj by

xhi =

{
xφi if x ∈ Xjf↾Xj

,

xψi if x ∈ Xi \Xjf↾Xj
.

Clearly, hi is bijective. We now prove that the map g ∈ T (X), defined by
xg = xhi whenever x ∈ Xi for some i ∈ I, is a unit element of B(X,P). For
this, let i ∈ I and write i(χ(f))−1 = j. Then, since hi : Xi → Xj is bijective,

we get Xig = Xihi = Xj . Therefore g ∈ T (X,P) and χ(g) = (χ(f))−1. Since

χ(g) ∈ Sym(I) and every map g↾Xi
= hi of B(g, I) is bijective, it follows from

Theorem 2.4 that g ∈ U(B(X,P)). Finally, we prove that fgf = f . For this,
let x ∈ X. Then x ∈ Xi for some i ∈ I. Write xf↾Xi

= y and iχ(f) = j.

Therefore, since y′ ∈ y(f↾Xi
)−1 ∩Tf↾Xi

, we obtain x(fgf) = (xf↾Xi
)g↾Xj

f↾Xi
=

(yg↾Xj
)f↾Xi

= y′f↾Xi
= y = xf↾Xi

= xf , which yields fgf = f . Hence f ∈
ureg(B(X,P)) as required. □

It is well-known that T (X) is unit-regular if and only if X is finite (cf.
[4, Proposition 5]). In the following theorem, we describe the unit-regularity
for B(X,P).

Theorem 3.3. The semigroup B(X,P) is unit-regular if and only if

(i) P is a uniform partition;
(ii) the cardinality of every block of P is finite.

Proof. Suppose that B(X,P) is a unit-regular semigroup.
(i) Suppose to the contrary that there are distinct j, k ∈ I such that |Xj | ≠

|Xk|. Consider the following two possible cases:

Case 1: Suppose |Xj | < |Xk|. Then there exists a mapping φ : Xj → Xk that
is injective, but not surjective. Therefore c(φ) = 0 and d(φ) ≥ 1.

Case 2: Suppose |Xj | > |Xk|. Then there exists a mapping φ : Xj → Xk that
is surjective, but not injective. Therefore c(φ) ≥ 1 and d(φ) = 0.

In either case, there is a mapping φ : Xj → Xk such that c(φ) ̸= d(φ). We
now choose xi ∈ Xi for each i ∈ I \ {k}, and consider α ∈ Sym(I) such that
jα = k. Define f ∈ T (X) by

xf =

{
xφ if x ∈ Xj ,

xiα if x ∈ Xi, where i ∈ I \ {j}.
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Clearly, f ∈ T (X,P) and χ(f) = α, so f ∈ B(X,P). However, since c(φ) ̸=
d(φ), we see that c(f↾Xj

) = c(φ) ̸= d(φ)=d(f↾Xj
). Therefore f /∈ureg(B(X,P))

by Theorem 3.2, which is a contradiction. Hence P is uniform.
(ii) Suppose to the contrary that Xi is infinite for some i ∈ I. Then there

exists a map ψ : Xi → Xi that is surjective, but not injective. Therefore
c(ψ) ≥ 1 and d(ψ) = 0, so c(ψ) ̸= d(ψ). Define g ∈ T (X) by

xg =

{
xψ if x ∈ Xi,

x otherwise.

Clearly, g ∈ T (X,P) and χ(g) = idI , so g ∈ B(X,P). However, since c(ψ) ̸=
d(ψ), we see that c(f↾Xi

)=c(ψ) ̸= d(ψ) = d(f↾Xi
). Therefore f /∈ureg(B(X,P))

by Theorem 3.2, which is a contradiction. Hence the cardinality of every block
of P is finite.

Conversely, suppose that the given conditions hold. Let f ∈ B(X,P) and
let i ∈ I. Consider the map f↾Xi

: Xi → Xiχ(f) of B(f, I). By condition

(i), we have |Xi| = |Xiχ(f) |. Note from condition (ii) that Xi is finite, so
c(f↾Xi

) = d(f↾Xi
). Thus c(f↾Xi

) = d(f↾Xi
) for all i ∈ I, where f↾Xi

∈ B(f, I).

Hence f ∈ ureg(B(X,P)) by Theorem 3.2 as required. □

4. Green’s relations on B(X,P)

In this section, we give a complete description of Green’s relations on
B(X,P). We begin with a lemma that is useful in describing the relation
L on B(X,P).

Lemma 4.1. Let f, g ∈ B(X,P). Then Lf ≤ Lg in B(X,P) if and only if
there exists α ∈ Sym(I) such that Xif ⊆ Xiαg for all i ∈ I.

Proof. Suppose that Lf ≤ Lg in B(X,P). Then there exists h ∈ B(X,P) such

that f = hg. This gives χ(f) = χ(h)χ(g) by Lemma 2.2. Write χ(h) = α.
Then, since h ∈ B(X,P), we have α ∈ Sym(I). To prove the desired result, let
i ∈ I. Note that Xih ⊆ Xiα, and therefore Xif = Xi(hg) = (Xih)g ⊆ Xiαg as
required.

Conversely, suppose that the given condition holds. To prove Lf ≤ Lg in
B(X,P), we shall construct h ∈ B(X,P) such that f = hg. For this, let i ∈ I.
By hypothesis, we have Xif ⊆ Xiαg. Therefore for each x ∈ Xi, fix x

′ ∈ Xiα

such that xf = x′g. Define h ∈ T (X) as follows: Given x ∈ X, there exists
i ∈ I such that x ∈ Xi; we let xh = x′. Clearly, Xih ⊆ Xiα, since x

′ ∈ Xiα.
Therefore f ∈ T (X,P) and χ(h) = α, so h ∈ B(X,P). Finally, we prove that
f = hg. For this, let x ∈ X. Then x ∈ Xi for some i ∈ I. Therefore, since
xf = x′g, we obtain x(hg) = (xh)g = x′g = xf , which yields f = hg. Thus
Lf ≤ Lg in B(X,P). □

In the following theorem, we describe the relation L on B(X,P).
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Theorem 4.2. Let f, g ∈ B(X,P). Then (f, g) ∈ L in B(X,P) if and only if
there exists α ∈ Sym(I) such that Xif = Xiαg for all i ∈ I.

Proof. Suppose that (f, g) ∈ L in B(X,P). Then there exist h, h′ ∈ B(X,P)
such that f = hg and g = h′f . It follows from Lemma 2.2 that χ(f) = χ(h)χ(g)

and χ(g) = χ(h′)χ(f). Note that χ(f), χ(g), χ(h), χ(h′) ∈ Sym(I), write χ(h) = α

and χ(h′) = β. Clearly, β = α−1. To prove the desired result, let i ∈ I. Note
that Xih ⊆ Xiα, and so Xif = Xi(hg) = (Xih)g ⊆ Xiαg. For the reverse
inclusion, note that β = α−1 and Xiαh

′ ⊆ X(iα)β = Xi. Therefore, since
g = h′f , we obtain Xiαg = Xiα(h

′f) = (Xiαh
′)f ⊆ Xif as required.

Conversely, suppose that there exists α ∈ Sym(I) such that Xif = Xiαg for
all i ∈ I. Then Lf ≤ Lg in B(X,P) by Lemma 4.1. Next, note that α−1 ∈
Sym(I) and write α−1 = β. Then by hypothesis, we get Xig = X(iβ)αg = Xiβf
for all i ∈ I. Therefore Lg ≤ Lf in B(X,P) by Lemma 4.1. Thus (f, g) ∈ L in
B(X,P). □

To describe the relation R on B(X,P), we need the following terminology
and Lemma 4.3.

Let f, g ∈ T (X). We say that π(f) refines π(g), denoted by π(f) ⪯ π(g), if
ker(f) ⊆ ker(g). Equivalently, we have π(f) ⪯ π(g) if for every P ∈ π(f), there
exists Q ∈ π(g) such that P ⊆ Q. We shall write π(f) = π(g) if π(f) ⪯ π(g)
and π(g) ⪯ π(f).

Lemma 4.3. Let f, g ∈ B(X,P). Then Rf ≤ Rg in B(X,P) if and only if
π(g) ⪯ π(f).

Proof. Suppose that Rf ≤ Rg in B(X,P). Then there exists h ∈ B(X,P)
such that f = gh. It follows from [3, Lemma 2.6] that π(g) ⪯ π(f), since
f, g, h ∈ T (X).

Conversely, suppose that π(g) ⪯ π(f). To prove Rf ≤ Rg in B(X,P), we
shall construct h ∈ B(X,P) such that f = gh. For this, fix yi ∈ Xi for each
i ∈ I; fix x′ ∈ xg−1 for each x ∈ Xg. Note that χ(f), χ(g) ∈ Sym(I), and write
(χ(g))−1χ(f) = α. Define h ∈ T (X) as follows: Given x ∈ X, there exists i ∈ I
such that x ∈ Xi; we let

xh =

{
x′f if x ∈ Xi ∩Xg,
yiα if x ∈ Xi \Xg.

Clearly, h is well-defined, since π(g) ⪯ π(f). We also observe that Xih ⊆ Xiα,
since x′ ∈ Xi(χ(g))−1 whenever x ∈ Xi ∩Xg, and (χ(g))−1χ(f) = α. Therefore

h ∈ T (X,P) and χ(h) = α, so h ∈ B(X,P). Finally, we prove that f = gh. For
this, let x ∈ X. Then x ∈ Xi for some i ∈ I. Therefore, since x′ ∈ xg−1 and
xg−1 ∈ π(f), we obtain x(gh) = (xg)h = x′f = xf , which yields f = gh. Thus
Rf ≤ Rg in B(X,P). □

Theorem 4.4. Let f, g ∈ B(X,P). Then (f, g) ∈ R in B(X,P) if and only if
π(f) = π(g).
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Proof. This proof follows directly from Lemma 4.3. □

To describe the relation D on B(X,P), we need the following terminology.
For any A ⊆ X and any f ∈ T (X), let πA(f) = {M ∈ π(f) : M ∩ A ̸= ∅}.

We shall write π(f) instead of πX(f) if A = X.

Theorem 4.5. Let f, g ∈ B(X,P). Then (f, g) ∈ D in B(X,P) if and only if
there exists α ∈ Sym(I) such that |Xif | = |Xiαg| for all i ∈ I.

Proof. Suppose that (f, g) ∈ D in B(X,P). Then there exists h ∈ B(X,P)
such that (f, h) ∈ L in B(X,P) and (h, g) ∈ R in B(X,P). Since (f, h) ∈ L, it
follows from Theorem 4.2 that there exists α ∈ Sym(I) such that Xkf = Xkαh
for all k ∈ I. To prove the desired result, let i ∈ I and write iα = j. Then
Xif = Xjh, so |Xif | = |Xjh|. Now since (h, g) ∈ R in B(X,P), it follows from
Theorem 4.4 that π(h) = π(g). This yields πXj (h) = πXj (g), so |πXj (h)| =
|πXj (g)|. Notice that |πXj (h)| = |Xjh| and |πXj (g)| = |Xjg|, so |Xjh| = |Xjg|.
Thus |Xif | = |Xjg| as required.

Conversely, suppose that there exists α ∈ Sym(I) such that |Xif | = |Xiαg|
for all i ∈ I. To prove (f, g) ∈ D in B(X,P), we shall construct h ∈ B(X,P)
such that (f, h) ∈ L in B(X,P) and (h, g) ∈ R in B(X,P). For this, let i ∈ I
and write β = α−1. Then |Xig| = |X(iβ)αg| = |Xiβf | by hypothesis, so there
is a bijection φi : Xig → Xiβf . Now define h ∈ T (X) as follows: Given x ∈ X,
there exists i ∈ I such that x ∈ Xi; we let xh = x(gφi). Clearly, h ∈ T (X,P)
and χ(h) = βχ(f), since Xih = Xi(gφi) = Xiβf ⊆ Xi(βχ(f)) for all i ∈ I.

Therefore h ∈ B(X,P). Recall that β ∈ Sym(I) and Xih = Xiβf for all i ∈ I.
Thus (f, h) ∈ L in B(X,P) by Theorem 4.2 and the fact that L is a symmetric
relation. It is easy to see from definition of h that πXi

(h) = πXi
(g) for all i ∈ I,

which yields π(h) = π(g). Therefore (h, g) ∈ R in B(X,P) by Theorem 4.4.
Thus, since D = L ◦ R, we conclude that (f, g) ∈ D in B(X,P). □

To describe the relation J on B(X,P), we need the following lemma.

Lemma 4.6. Let f, g ∈ B(X,P). Then Jf ≤ Jg in B(X,P) if and only if there
exists α ∈ Sym(I) such that |Xif | ≤ |Xiαg| for all i ∈ I.

Proof. Suppose that Jf ≤ Jg in B(X,P). Then there exist h, h1 ∈ B(X,P)

such that f = hgh1. Set χ(h) = α. Clearly, α ∈ Sym(I), since h ∈ B(X,P).
To prove the desired result, let i ∈ I. Notice that Xih ⊆ Xiα and therefore
|Xif | = |(Xih)gh1| ≤ |(Xiαg)h1| ≤ |Xiαg| as required.

Conversely, suppose that there exists α ∈ Sym(I) such that |Xif | ≤ |Xiαg|
for all i ∈ I. Then for every i ∈ I, there exists an injection φi : Xif → Xiαg.
Now choose y′ ∈ (yφi)g

−1 for each y ∈ Xif . To prove the desired result, we
shall construct h, h1 ∈ B(X,P) such that f = hgh1.

We first define h ∈ T (X) as follows: Given x ∈ X, there exists i ∈ I such
that x ∈ Xi; write xf = y, and we let xh = y′. To prove h ∈ B(X,P), let i ∈ I
and x ∈ Xi. Set xf = z. Then xh = z′ by definition of h, where z′ ∈ (zφi)g

−1.
Since z ∈ Xif , it follows that zφi ∈ Xiαg by definition of φi. This gives
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(zφi)g
−1 ⊆ Xiα, since χ

(g) ∈ Sym(I). Therefore, since z′ ∈ (zφi)g
−1, we get

xh = z′ ∈ Xiα. Thus h ∈ T (X,P) and χ(h) = α, so h ∈ B(X,P).
To define h1 ∈ B(X,P), we observe for every i ∈ I that Xi(fφi) = Xi(hg),

since (xf)′ ∈ ((xf)φi)g
−1 and x(hg) = (xh)g = (xf)′g = (xf)φi for all x ∈ Xi.

Also, fix xi ∈ Xi for each i ∈ I. Let β = (αχ(g))−1χ(f). Clearly, β ∈ Sym(I)
and χ(f) = αχ(g)β, since χ(f), χ(g), α ∈ Sym(I). Define h1 ∈ T (X) as follows:
Given x ∈ X, there exists i ∈ I such that x ∈ Xi; write i(αχ

(g))−1 = j, and
we let

xh1 =

{
y if x ∈ Xi ∩X(hg) and xφ−1

j = {y},
xiβ if x ∈ Xi \X(hg).

To prove h1 ∈ B(X,P), let i ∈ I and x ∈ Xi. Consider the following two
possible cases:

Case 1: Suppose x ∈ Xi ∩X(hg). Write i(αχ(g))−1 = k. Then, since χ(h) = α,
we see that Xk(hg) ⊆ Xkαg ⊆ Xk(αχ(g)) = Xi. As α, χ(g) ∈ Sym(I), it

follows that Xk(hg) = Xi ∩X(hg). Therefore x ∈ Xk(hg) ⊆ Xkαg. Note that
φk : Xkf → Xkαg is injective and Xk(fφk) = Xk(hg). It follows that xφ−1

k =

{z} for some z ∈ Xkf . Therefore, since i(αχ
(g))−1 = k and β = (αχ(g))−1χ(f),

we obtain kχ(f) = (i(αχ(g))−1)χ(f) = iβ, which yields Xkf ⊆ Xiβ . Thus, since
z ∈ Xkf , we get xh1 = z ∈ Xiβ .

Case 2: Suppose x ∈ Xi \ X(hg). Then xh1 = xiβ by definition of h1, so
xh1 ∈ Xiβ .

In either case, we have xh1 ∈ Xiβ . Hence Xih1 ⊆ Xiβ . This gives h1 ∈
T (X,P) and χ(h1) = β, so h1 ∈ B(X,P).

Finally, we prove that f = hgh1. For this, let x ∈ X. Then x ∈ Xi

for some i ∈ I. Recall that φi : Xif → Xiαg is an injection. Therefore,
since xh = (xf)′ ∈ ((xf)φi)g

−1 ⊆ Xiα, we obtain x(hgh1) = (xh)(gh1) =
(xf)′(gh1) = (x(fφi))h1 = xf , which yields f = hgh1 as required. □

Theorem 4.7. Let f, g ∈ B(X,P). Then (f, g) ∈ J in B(X,P) if and only if
there exist α, β ∈ Sym(I) such that |Xif | ≤ |Xiαg| and |Xig| ≤ |Xiβf | for all
i ∈ I.

Proof. This proof follows directly from Lemma 4.6. □

In the following proposition, we prove that the relations D and J on B(X,P)
coincide when P is finite.

Proposition 4.8. If P is a finite partition of X, then D = J on B(X,P).

Proof. Let P = {Xi : i ∈ [m]}, where m ∈ N. In general, we have D ⊆ J .
For the reverse inclusion, let (f, g) ∈ J in B(X,P). Then by Theorem 4.7,
there exist α, β ∈ Sym([m]) such that |Xif | ≤ |Xiαg| and |Xig| ≤ |Xiβf | for
all i ∈ [m]. Therefore for every i ∈ [m], we obtain

(1) |Xif | ≤ |Xiαg| ≤ |X(iα)βf | = |Xi(αβ)f |.
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Note that m is finite and αβ ∈ Sym([m]). Therefore there exists k ∈ N such
that j(αβ)k = j for all j ∈ [m].

In view of Theorem 4.5, in order to show that (f, g) ∈ D in B(X,P), it
suffices to prove that |Xif | = |Xiαg| for all i ∈ [m]. For this, let i ∈ [m].
Then from inequality (1), we have |Xif | ≤ |Xi(αβ)f |. Therefore, since (αβ)k is
identity map on [m], we obtain by using inequality (1) that

|Xif | ≤ |Xi(αβ)f | ≤ |Xi(αβ)2f | ≤ · · · ≤ |Xi(αβ)kf | = |Xif |
whence |Xif | = |Xi(αβ)f |. Note from inequality (1) that |Xif | ≤ |Xiαg| ≤
|Xi(αβ)f |, so |Xif | = |Xiαg|. Hence, since α ∈ Sym([m]), we conclude from
Theorem 4.5 that (f, g) ∈ D in B(X,P) as required. □

We now introduce the following terminology.
For any f ∈ B(X,P), let Pf = {Xif : i ∈ I}. It is clear that Pf is a partition

of the range set Xf of f , since χ(f) ∈ Sym(I).
Note that if P is an infinite partition consisting of only singleton sets, then

B(X,P) = Sym(X), so D = J on B(X,P). However, for an infinite partition
P, it is not always true that D = J on B(X,P), as shown in the following
example.

Example 4.9. Let X = N. Consider the partition P = {Xi : i ∈ I} of X,
where I = {1, 3, 5k, 5k + 1: k ∈ N}; X1 = {1, 2}, X3 = {3, 4}, and for each
k ∈ N, X5k = {5k}, X5k+1 = {5k + 1, 5k + 2, 5k + 3, 5k + 4}. Take mappings
f, g : X → X defined by xg = x and

xf =

{
1 if x ∈ X1,

x otherwise.

Clearly, f, g ∈ T (X,P) and χ(f) = χ(g) = idI , so f, g ∈ B(X,P). Notice that
Pf has exactly one block of cardinality 2, while Pg has two blocks of cardinality
2. Therefore there does not exist any α ∈ Sym(I) such that |Xif | = |Xiαg| for
all i ∈ I. Hence (f, g) /∈ D in B(X,P) by Theorem 4.5.

Finally, we prove that (f, g) ∈ J in B(X,P). Consider α, β ∈ T (I) defined
by iα = i and

iβ =



6 if i = 1,

3 if i = 3,

1 if i = 5,

5(k − 1) if i = 5k, where k ≥ 2,

5(k + 1) + 1 if i = 5k + 1, where k ≥ 1.

Observe that α, β ∈ Sym(I). For every i ∈ I, it is also routine to verify
that |Xif | ≤ |Xiαg| and |Xig| ≤ |Xiβf |. Therefore (f, g) ∈ J in B(X,P) by
Theorem 4.7, and thus (f, g) ∈ J \ D in B(X,P).

In the following proposition, we give a sufficient condition under which the
relations D and J on B(X,P) do not coincide.
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Proposition 4.10. Let P = {Xi : i ∈ I} be a partition of X. If J = {i ∈
I : |Xi| ≥ 3} is an infinite subset of I, then D ≠ J on B(X,P).

Proof. Since J is infinite, there exists a proper subset K of J such that |K| =
|J \ K| = |J |. Let k ∈ K, and fix distinct yk, y

′
k ∈ Xk. Also, fix distinct

ui, vi, wi ∈ Xi for each i ∈ K \ {k}; fix zi ∈ Xi for each i ∈ I \K. Consider
mappings f, g : X → X defined by

xf =



yk if x = yk,

y′k if x ∈ Xk \ {yk},
ui if x = ui ∈ Xi, where i ∈ K \ {k},
vi if x = vi ∈ Xi, where i ∈ K \ {k},
wi if x ∈ Xi \ {ui, vi}, where i ∈ K \ {k},
zi if x ∈ Xi, where i ∈ I \K,

and

xg =



yk if x ∈ Xk,

ui if x = ui ∈ Xi, where i ∈ K \ {k},
vi if x = vi ∈ Xi, where i ∈ K \ {k},
wi if x ∈ Xi \ {ui, vi}, where i ∈ K \ {k},
zi if x ∈ Xi, where i ∈ I \K.

For every i ∈ I, we observe that Xif ⊆ Xi and Xig ⊆ Xi. Therefore f, g ∈
T (X,P) and χ(f) = idI = χ(g). It follows that f, g ∈ B(X,P). Notice that
|Xkf | = 2, while |Xig| ̸= 2 for all i ∈ I. Therefore there does not exist
α ∈ Sym(I) such that |Xkf | = |Xkαg|. Hence (f, g) /∈ D in B(X,P) by
Theorem 4.5.

Finally, we prove that (f, g) ∈ J in B(X,P). For this, we first fix k′( ̸= k) ∈
K. Since K is infinite, we see that |K \ {k}| = |K \ {k, k′}|. Therefore there is
a bijection φ : K \ {k} → K \ {k, k′}. Recall that J is an infinite subset of I.
Since |J \K| = |J | and J \K ⊆ I \K, it follows that I \K is infinite. Therefore
|I \ K| = |(I \ K) ∪ {k}|, so there is a bijection ψ : I \ K → (I \ K) ∪ {k}.
Consider mappings α, β ∈ T (I) defined by iβ = i and

iα =


k′ if i = k,

iφ if i ∈ K \ {k},
iψ i ∈ I \K.

Notice that α, β ∈ Sym(I). For every i ∈ I, it is routine to verify that |Xif | ≤
|Xiαg| and |Xig| ≤ |Xiβf |. Therefore (f, g) ∈ J in B(X,P) by Theorem 4.7.
Thus D ≠ J on B(X,P). □

Now we establish an alternative characterization of the relationD on B(X,P)
in Proposition 4.11. Before that, we introduce the following terminology.
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Let f ∈ B(X,P). Recall that Pf = {Xif : i ∈ I} is a partition of the

range set Xf of f . For any cardinal λ, let Ifλ = {i ∈ I : |Xif | = λ} and

nfλ = |Ifλ |. Then it is clear that the collection {Ifλ : λ ≤ |X| such that Ifλ ̸= ∅}
is a partition of I.

Proposition 4.11. Let f, g ∈ B(X,P). Then (f, g) ∈ D in B(X,P) if and

only if nfλ = ngλ for all cardinals λ.

Proof. Suppose that (f, g) ∈ D in B(X,P). Then by Theorem 4.5, there exists
α ∈ Sym(I) such that |Xif | = |Xiαg| for all i ∈ I. To prove the desired result,

let λ be a cardinal. It is clear that nfλ = 0 if and only if ngλ = 0, since |Xif | ≠ λ

for all i ∈ I if and only if |Xig| ̸= λ for all i ∈ I. Assume that nfλ ≥ 1, and

let i ∈ Ifλ . Then |Xiαg| = |Xif | = λ, so iα ∈ Igλ. Since α is injective, we thus

get nfλ ≤ ngλ. Now, let i ∈ Igλ. Then |Xiα−1f | = |X(iα−1)αg| = |Xig| = λ, so

iα−1 ∈ Ifλ . Since α−1 is injective, we thus get nfλ ≥ ngλ. Hence nfλ = ngλ as
required.

Conversely, suppose that the given condition holds. In view of Theorem 4.5,
in order to prove (f, g) ∈ D in B(X,P), it suffices to construct α ∈ Sym(I)
such that |Xif | = |Xiαg| for all i ∈ I. For this, consider a cardinal λ. Note by

hypothesis that Ifλ = ∅ if and only if Igλ = ∅. If Ifλ ̸= ∅, then |Ifλ | = |Igλ| by
hypothesis. Therefore there exists a bijection αλ : I

f
λ → Igλ. Define α ∈ T (I) by

iα = iαλ whenever i ∈ Ifλ . Clearly, α is well-defined, since λ is arbitrary. Also,

since every αλ is bijective and
⋃

λ I
f
λ = I =

⋃
λ I

g
λ, we see that α ∈ Sym(I). It

is also routine to verify that |Xif | = |Xiαg| for all i ∈ I. Hence (f, g) ∈ D by
Theorem 4.5. □

In the following theorem, we give a sufficient condition for Df = Jf in
B(X,P).

Theorem 4.12. Let f ∈ B(X,P). If there exists two consecutive cardinals

λ1, λ2 such that nfλ = 0 for all cardinals λ /∈ {λ1, λ2}, then Df = Jf in
B(X,P).

Proof. Clearly, Df ⊆ Jf , since D ⊆ J . For the reverse inclusion, let g ∈ Jf .
Then by Theorem 4.2, there exist α, β ∈ Sym(I) such that for all i ∈ I,

(i) |Xif | ≤ |Xiαg| and (ii) |Xig| ≤ |Xiβf |.
First, we claim that ngλ = 0 for all cardinals λ /∈ {λ1, λ2}. Suppose to the

contrary that there exists λ /∈ {λ1, λ2} such that ngλ ̸= 0. Then |Xig| = λ for
some i ∈ I. Consider the following two possible cases:

Case 1: Suppose λ < λ1. By inequality (i), we obtain |Xiα−1f | ≤ |X(iα−1)αg| =
|Xig| = λ. This yields |Xiα−1f | < λ1, which is a contradiction of our hypothe-
sis.

Case 2: Suppose λ > λ2. By inequality (ii), we obtain λ = |Xig| ≤ |Xiβf |.
This yields |Xiβf | > λ2, which is a contradiction of our hypothesis.
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In either case, we get a contradiction. Hence ngλ = 0 for all cardinals λ /∈
{λ1, λ2}, and thus nfλ = 0 = ngλ for all cardinals λ /∈ {λ1, λ2}.

Next, we prove that nfλ1
= ngλ1

. Consider the following two possible cases:

Case 1: Suppose Ifλ1
= ∅. Suppose to the contrary that Igλ1

̸= ∅, and let

i ∈ Igλ1
. Then |Xig| = λ1, and so |Xiα−1f | ≤ |X(iα−1)αg| = |Xig| = λ1 by

inequality (i). This yields |Xiα−1f | = λ1 by hypothesis, and so iα−1 ∈ Ifλ1
.

This is a contradiction, because Ifλ1
= ∅. Hence Igλ1

= ∅, and thus nfλ1
= ngλ1

.

Case 2: Suppose Ifλ1
̸= ∅. Let i ∈ Ifλ1

. Then |Xif | = λ1, and so |Xiβ−1g| ≤
|X(iβ−1)βf | = |Xif | = λ1 by inequality (ii). Since ngλ = 0 for all cardinals

λ /∈ {λ1, λ2}, it follows that |Xiβ−1g| = λ1 whence iβ−1 ∈ Igλ1
. Since β−1 is

injective, we thus get nfλ1
≤ ngλ1

. Similarly, we can show that iα−1 ∈ Ifλ1
for

every i ∈ Igλ1
, and further prove that ngλ1

≤ nfλ1
by using the fact that α−1 is

injective. Thus nfλ1
= ngλ1

.

In either case, we have nfλ1
= ngλ1

.

Next, we prove that nfλ2
= ngλ2

. Consider the following two possible cases:

Case 1: Suppose Ifλ2
= ∅. Suppose to the contrary that Igλ2

̸= ∅, and let

i ∈ Igλ2
. Then |Xig| = λ2, and so λ2 = |Xig| ≤ |Xiβf | by inequality (ii). This

yields |Xiβf | = λ1 by hypothesis, and so iβ ∈ Ifλ2
. This is a contradiction,

because Ifλ2
= ∅. Hence Igλ2

= ∅, and thus nfλ2
= ngλ2

.

Case 2: Suppose Ifλ2
̸= ∅. Let i ∈ Ifλ2

. Then |Xif | = λ2, and so λ2 = |Xif | ≤
|Xiαg| by inequality (i). Since ngλ = 0 for all cardinals λ /∈ {λ1, λ2}, it follows
that |Xiαg| = λ2 whence iα ∈ Igλ2

. Since α is injective, we thus get nfλ2
≤ ngλ2

.

Similarly, we can show that iβ ∈ Ifλ2
for every i ∈ Igλ2

, and further prove that

ngλ2
≤ nfλ2

by using the fact that β is injective. Thus nfλ2
= ngλ2

.

In either case, we have nfλ2
= ngλ2

. Thus, since nfλ = ngλ for all cardinals λ,

we conclude from Proposition 4.11 that (f, g) ∈ D in B(X,P). Hence g ∈ Df

as required. □

As an immediate consequence of Theorem 4.12, we get:

Corollary 4.13. Let f ∈ B(X,P). If nfλ = 0 for all cardinals λ ≥ 3, then
Df = Jf in B(X,P).

In the following theorem, we give a necessary and sufficient condition for
D = J on B(X,P).

Theorem 4.14. Let P = {Xi : i ∈ I} be a partition of X. Then D = J on
B(X,P) if and only if J = {i ∈ I : |Xi| ≥ 3} is finite.

Proof. Suppose that D = J on B(X,P). If P is finite, then there is nothing
to prove. Assume that P is infinite. Suppose to the contrary that J = {i ∈
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I : |Xi| ≥ 3} is infinite. Then D ≠ J on B(X,P) by Proposition 4.10, which is
a contradiction. Hence J = {i ∈ I : |Xi| ≥ 3} is finite.

Conversely, suppose that J = {i ∈ I : |Xi| ≥ 3} is finite. If P is finite, then
D = J on B(X,P) by Proposition 4.8. Assume that P is infinite. In general,
we have D ⊆ J . For the reverse inclusion, let (f, g) ∈ J in B(X,P). Then by
Theorem 4.7, there exist α, β ∈ Sym(I) such that for all i ∈ I,

(i) |Xif | ≤ |Xiαg| and (ii) |Xig| ≤ |Xiβf |.
In view of Proposition 4.11, in order to show that (f, g) ∈ D in B(X,P), it

suffices to prove that nfλ = ngλ for all cardinals λ. Consider the following two
possible cases:

Case 1: Suppose nfλ = 0 for all λ ≥ 3. Then (f, g) ∈ D by Corollary 4.13.

Case 2: Suppose nfλ ̸= 0 for some cardinal λ ≥ 3. Let i ∈ Ifλ . Then |Xif | = λ,
and so 3 ≤ |Xiαg| by inequality (i). Therefore ngλ ̸= 0 for some cardinal λ ≥ 3.

Let λ1, . . . , λk, where λ1 > · · · > λk, be the cardinalities of blocks in Pf

of cardinalities at least three; let µ1, . . . , µt, where µ1 > · · · > µt, be the
cardinalities of blocks in Pg of cardinalities at least three. Note by hypothesis
that both k and t are finite.

First, we prove that λ1 = µ1 and subsequently nfλ1
= ngµ1

. For this, let

i ∈ Ifλ1
. Then by inequality (i), we have λ1 = |Xif | ≤ |Xiαg| ≤ µ1. Now,

let i ∈ Igµ1
. Then by inequality (ii), we have µ1 = |Xig| ≤ |Xiβf | ≤ λ1.

Thus λ1 = µ1. To prove nfλ1
= ngµ1

, we first observe for every i ∈ Ifλ1
that

|Xiαg| = λ1, whence iα ∈ Igλ1
. Therefore, since α is injective, we get nfλ1

≤ ngλ1
.

Similarly, by using the facts that β is injective and iβ ∈ Ifλ1
for every i ∈ Igλ1

,

we get ngλ1
≤ nfλ1

. Thus nfλ1
= ngλ1

. Moreover, recall by hypothesis that

both Ifλ1
and Igλ1

are finite. Therefore, since α, β are injective, both maps

αλ1
: Ifλ1

→ Igλ1
and βλ1

: Igλ1
→ Ifλ1

defined by iαλ1
= iα and iβλ1

= iβ,
respectively, are bijective.

Next, we prove that λ2 = µ2 and subsequently nfλ2
= ngµ2

. For this, let

i ∈ Ifλ2
. Recall that αλ1

: Ifλ1
→ Igλ1

is bijective, and so iα /∈ Igλ1
. There-

fore |Xiαg| ≤ µ2, which gives λ2 = |Xif | ≤ |Xiαg| ≤ µ2 by inequality (i).

Now, let i ∈ Igµ2
. Recall that βλ1

: Igλ1
→ Ifλ1

is bijective, and so iβ /∈ Ifλ1
.

Therefore |Xiαf | ≤ λ2, which gives µ2 = |Xig| ≤ |Xiβf | ≤ λ2 by inequality

(ii). Thus λ2 = µ2. To prove nfλ2
= ngµ2

, we first observe for every i ∈ Ifλ2

that |Xiαg| = λ2, whence iα ∈ Igλ2
. Therefore, since α is injective, we get

nfλ2
≤ ngλ2

. Similarly, by using the facts that β is injective and iβ ∈ Ifλ2
for

every i ∈ Igλ2
, we get ngλ2

≤ nfλ2
. Thus nfλ2

= ngλ2
. Moreover, recall by hypoth-

esis that both Ifλ2
and Igλ2

are finite. Therefore, since α, β are injective, both

maps αλ2 : I
f
λ2

→ Igλ2
and βλ2 : I

g
λ2

→ Ifλ2
defined by iαλ2 = iα and iβλ2 = iβ,

respectively, are bijective.
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We can prove in similar way that λj = µj and nfλj
= ngµj

for all j =

3, . . . ,min{k, t}. Moreover, we observe for every j = 3, . . . ,min{k, t} that both

maps αλj
: Ifλj

→ Igλj
and βλj

: Igλj
→ Ifλj

defined by iαλj
= iα and iβλj

= iβ,

respectively, are bijective.

We now claim that k = t. Suppose to the contrary that k ̸= t. Assume
without loss of generality that k < t. Then min{k, t} = k, and so λj = µj

for all j ∈ [k]. Now, let i ∈ Igµt
. Then we see that iβ /∈ Ifλj

for all j ∈ [k],

since βλj
: Igλj

→ Ifλj
is bijective for all j ∈ [k]. Therefore iβ ∈ If1 ∪ If2 , and so

|Xiβf | ≤ 2. Recall that |Xig| = µt ≥ 3. By inequality (ii), we therefore obtain
3 ≤ |Xig| ≤ |Xiβf | ≤ 2, which is a contradiction. Hence k = t.

Next, we prove that nf2 = ng2. Consider the following two possible cases:

Case I: Suppose If2 = ∅. Suppose to the contrary that Ig2 ̸= ∅, and let i ∈ Ig2 .

Then |Xig| = 2. Notice that iβ /∈ Ifλj
for all j ∈ [k], since βλj

: Igλj
→ Ifλj

is

bijective for all j ∈ [k]. Therefore iβ ∈ If1 , and so |Xiβf | = 1. By inequality
(ii), we obtain 2 = |Xig| ≤ |Xiβf | = 1, which is a contradiction. Hence Ig2 = ∅,

and thus nf2 = ng2.

Case II: Suppose If2 ̸= ∅. Let i ∈ If2 . Then |Xif | = 2, and so 2 ≤ |Xiαg|
by inequality (i). Notice that iα /∈ Igλj

for all j ∈ [k], since αλj : I
f
λj

→ Igλj
is

bijective for all j ∈ [k]. Therefore iα ∈ Ig2 . Since α is injective, we thus get

nf2 ≤ ng2. Now, let i ∈ Ig2 . Then |Xig| = 2, and so 2 ≤ |Xiβf | by inequality

(ii). Notice that iβ /∈ Ifλj
for all j ∈ [k], since βλj

: Igλj
→ Ifλj

is bijective for all

j ∈ [k]. Therefore iβ ∈ If2 . Since β is injective, we thus get nf2 ≥ ng2. Hence

nf2 = ng2.

In either case, we have nf2 = ng2. Finally, we prove that nf1 = ng1. Consider
the following two possible cases:

Case I: Suppose If1 = ∅. Suppose to the contrary that Ig1 ̸= ∅, and let i ∈ Ig1 .
Then |Xig| = 1, and so |Xiα−1f | ≤ |X(iα−1)αg| = |Xig| by inequality (i). It

follows that |Xiα−1f | = 1, and so iα−1 ∈ If1 , which is a contradiction. Hence

Ig1 = ∅, and thus nf1 = ng1.

Case II: Suppose If1 ̸= ∅. Let i ∈ If1 . Then |Xif | = 1, and so |Xiβ−1g| ≤
|X(iβ−1)βf | = |Xif | by inequality (ii). It follows that |Xiβ−1g| = 1, and so

iβ−1 ∈ Ig1 . Since β−1 is injective, we thus get nf1 ≤ ng1. Now, let i ∈ Ig1 .
Then |Xig| = 1, and so |Xiα−1f | ≤ |X(iα−1)αg| = |Xig| by inequality (i). It

follows that |Xiα−1f | = 1, and so iα−1 ∈ If1 . Since α−1 is injective, we thus

get nf1 ≥ ng1. Hence nf1 = ng1.

In either case, we have nf1 = ng1. In addition, we note for every cardinal

λ /∈ {1, 2, λk, . . . , λ1} that nfλ = 0 = ngλ. Thus we conclude from Proposition
4.11 that (f, g) ∈ D in B(X,P) as required. □
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Note that D = J on B(X,P) if P is a trivial partition of X. In connections
with Proposition 4.8, Theorem 4.12, and Theorem 4.14, we end this section
with the following conjecture.

Conjecture. Let P = {Xi : i ∈ I} be a partition of X and f ∈ B(X,P). Then
Df = Jf in B(X,P) if and only if there exist two consecutive cardinals λ1, λ2
and a finite subset K of I such that |Xif | ∈ {λ1, λ2} for all i ∈ I \K.
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[1] J. Araújo, W. Bentz, J. D. Mitchell, and C. Schneider, The rank of the semigroup of

transformations stabilising a partition of a finite set, Math. Proc. Cambridge Philos.
Soc. 159 (2015), no. 2, 339–353. https://doi.org/10.1017/S0305004115000389
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