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GENERALIZED TOEPLITZ
ALGEBRAS OF SEMIGROUPS

SUN YOUNG JANG

ABSTRACT. We analyze the structure of (O*-algebras gener-
ated by left regular isometric representations of semigroups.

1. Introduction

For a given group G, we consider the unitary representations of G
which correspond to the representations of the full group C*-algebra
C*(G). Specially, the left regular unitary representation of G gives
rise to the reduced group C*-algebra, which has been an important
object in the theory of C*-algebras.

In analogy with a group case one can associate isometric represen-
tations with semigroups. The left regular isometric representations
of semigroups may be considered as the counterpart of the left reg-
ular unitary representations of groups, so they are very interesting
non-unitary isometric representations of semigroups. In this paper
we are going to study C*-algebras generated by left regular isomet-
ric representations for left cancellative semigroups, called reduced
semigroup C*-algebras from the point of view of crossed products.

The theory of crossed products of C*-algebras by semigroups has
been studied by many authors in [1, 2, 3, 4, 7, 8, 9, 12, 13]. We are
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concerned with the two kinds of crossed products of C*-algebras by
semigroups, the one is the full crossed product by the semigroup of
automorphisms introduced by G. J. Murphy in [11] and the other is
the reduced crossed product by the semigroup of automorphisms [5]
for a C"*-dynamical system (A, M, «) with a left-cancellative semi-
group M. If these constructions applied to the trivial C"*-dynamical
system with the left-cancellative semigroup M, they give rise to
the full semigroup C*-algebra C*(M) and the reduced semigroup
C*-algebra C_,(M), respectively. The full semigroup C*-algebra
C*(M) is the universal C*-algebra generated by enveloping of all
isometric representations of M and effect isometric representation
theories of M. On the other hand reduced semigroup C*-algebras
which are generated by left regular isometric representations give in-
teresting examples of the theory of C'*-algebras and have been stud-
ied much in the another name in [1, 2, 3, 6, 11] among others. As we
can see from the fact that the typical model of reduced semigroup
C*-algebras is the Toeplitz algebra, there are many interesting prob-
lems in the theory of the reduced semigroup C*-algebras.

For a left-cancellative semigroup M, let £ : M — [?(M) denote
the left regular isometric representation of A on the Hilbert space
12(M) of all square-summable maps on M. The followings have been
key questions in the theory of the reduced semigroup C*-algebras:

(1) The uniqueness property, that is, when is C?_,(M) isomor-
phic to C*(M) ?

(2) If Z(C?,,(M)) is the ideal of C_ (M) generated by I — £, L%
for all © € M, when is Z(C7_;(M)) simple ?

(3) When does C_,(M) contain the algebra K(I*(M)) of com-
pact operators on I?(M)?

(4) When is C?_,(M) prime 7

(1) and (2) of the above problems were solved partially [1,2,3,11,6]
and (1), (3) and (4) also were partially proved [9, 10].

Besides the above problems, the computation of K-groups, and
stable rank of C}_,(M) and Z(C}, ,(M)) are also interesting prob-
lems. In this paper we have some results of the uniqueness property
of C* ;(M) and analyze the structure of Z(C},,(3)).

red
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2. Preliminaries

Throught this paper M denotes a left-cancellative discrete semi-
group with unit e. Let B be a unital C*-algebra. A map W : M —
B, r — W, is called an isometric homomorphism if W, =1, W, is
an isometry and W, = W, W, for all z,y € M. If B is the algebra
B(H) of all bounded linear operators of a non-zero Hilbert space H,
we call (H, W) an isometric representation of M.

Let H be a non-zero Hilbert space and I2(M, H) denote the Hilbert
space of all norm square-summable maps f from M to H. The
left regular isometric representation £ of M on 1?(M, H) is a map
L:M —1*(M,H),zv— L, defined by the equation

fly), if z=xy for some y € M,
E:l\ 2} = < <
(L)) { 0, if v axM,
for each f € 1*(M, H). If we define g(“‘”) € I*(M, H) by setting

9 (y) = { S By=2

(0, otherwise,

for £ € H and x € M, then L, (@) = WD) for all x, y € M

If Ais a C*-algebra and « : * — «, is a homomorphism from M
into the group Aut(A) of automorphisms of A, then a triple (4, M, «)
is called a C*-dynamical system. For a given C*-dynamical sys-
tem (A, M, o), G J. Murphy constructed the full crossed product
A X M by the semigroup 3 under the action «, which has the uni-
versal property of the covariant homomorphisms of (A, M, «). The
full crossed product by the semigroup corresponding to the trivial
C*-dynamical system is called the full semigroup C*-algebra and
denoted by C*(M). By the universal property of the full crossed
product by the semigroup, C*(34) is the universal C*-algebra gen-
erated by enveloping of all isometric representations of M [10)].

Let {7y, H,) be the universal representation of A and £ be the left
regular isometric representation of M on!?(M, H,). Then , induces
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a covariant representation (7,, L) of (A, M, «) on I2(M, H,) where
(7o (@) (f)(x) = 7 (o (@) (f(x)) for @ € A, f € I?(M,H,), and
x € M. Since A x, M has the universal property of the covariant
homomorphisms, there exists a unique *-homomorphism 7, x £ :
Axg M — B(I?(M,H,)). We call (7, X L)(A x, M) the reduced
crossed product of A by the semigroup M under the action « and
denote it by A x,, M. In fact, A Xqr M is generated by {al,|a €
A,x € M}. In the case of the trivial C*-dynamical system, C x,, M
is generated by the left regular isometric representation £ of M on
I2(M). We denote C X, M by C* (M) and call it the reduced
semigroup C* -algebra of M [5].

3. The Structure of Reduced Semigroup (*-algebras

We are going to say that if an element = in M is contained in
yM for some element y € M, then & and y are comparable and we
denote it by y < 2. This relation defines a pre-order on M. If the
unit of M is the only invertible element of M, the above relation on
M becomes a partial order on M. And we can say a maximal and a
minimal element in M in the following sense ; An element aq € M
is maximal if and only if ayp < x implies » = @y and an element a; is
minimal if and only if # < @ implies a; = x for x € M.

Since CF_ (M) is generated by {£, | 2z € M} and £, is isometry,

req(M) is the closed linear span of {L,, L, -+ L5, Log,,, | % €
M}. Isometries £,’s induce two projections L£.L% and 1 — £,.L%
which play an important role in the theory of the structure of reduced
semigroup C*-algebras. We denote them by P, and (), , respectively.

PROPOSITION 3.1. If any two elements x and y in M are compa-
rable, then C7_;(M) is the closed linear span of {L. L}, |x,y € M}.

Proof. Since {L., Ly - L, Lq,.,, |2 € M}istotalin C; (M),
it is enough to show that £, L --- L L, ., canbe changed into
the element of the form £, L} for «,y € M. Since any two elements
in M are comparable, we can agsume that either x9, = 2,412, O

14 14 . .
Tont1 = TanZ, for some z, and z, € M. First, if x2,, = X2nt1%n,
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then

L. L5, L, L

T2 T ¥2n41

=L, L, L] L, L

X241 T2n41

=L, L0 Loy LY

P
Zn

Next, we compare z, with x2,—1. If we continue this process,
then £, L}, -+ L}, Le,,, becomes L L for some x,y € M. We

Lo2n
7
can get the same result by the similar way when 29,41 = 2,2, for
’
some z, € M. U

Group C*-algebras and reduced group C*-algebras give lots of ex-
amples of simple C*-algebras. However, semigroup C*-algebras and
reduced semigroup C*-algebras are rarely simple. In fact, if A is not
a group, C7 ,(M) has an interesting non-trivial ideal Z(C}. ;(M))

red red
generated by 1 — £,£% for x € M. Sometimes Z(C}.,(M)) plays
an important role to analyze the structure of C} (M) (cf. [6,10]).

Furthermore if M is abelian, Z(C?, ,(M)) is the commutator ideal
of Cr 4 (M). Let Z denote the closed two-sided ideal of C?, (M)
generated by [l.“[l_;l o Ly, E;n - EE%_ *‘i‘C*Z:,- v, for i,y € M.

PROPOSITION 3.2. Let M be an abelian semigroup. Let . =
1—L,L: for each x € M. Then {Q, | x € M} is an approximate
unit for Z.

Proof. Let § = [lg\l[l_;l Ly L —EE_ . E*Z v We can choose
o k3 J

an element z € M such that z > E?ﬂ y;. Then we have for each
reM

Sﬁz(él) = ﬁfﬂlﬁ-:rl f ﬁfcn ﬁznﬁz(éc) - (EZYb i ﬁ*zj Y5 )ﬁz(éfc)

= 0ot (Sr wi-f vte ~ Ok (D ni =T v 4a
=0

g

Therefore SL,L: = 5(1 — Q.) = 0. It follows from the above equa-
tion that if T € Z, then limTQ, = T. Thus {Q. | * € M} is an
approximate unit. for Z.
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PROPOSITION 3.3. Let M be an abelian semigroup. Then T is
equal to the commutator ideal Z(C?_,(M)).

“red
Proof. Since Q, =1 — L£,.L% is contained in 7 for each 2 € M,
*a(M)/T is abelian. Hence we have T 2 Z(C}_,;(M)). Fur-
thermore since {Q, | * € M} is an approximate unit for Z and
{Q. | ® € M} is contained in Z(C}_,(M)), T C Z(C?_,(M)). O

We can get the following result from the above propositions.

THEOREM 3.4. Let M be an abelian semigroup. Then {Q, | x €
M} is an approximate unit for Z(C},_,(M)).

4. Generalized Toeplitz Algebras

When M is the semigroup N of natural numbers, the Grothendieck
group of N is the integer group Z and the character group of Z is
the cicle group T. We consider the normalized Haar measure on
the circle group T, denoted by dA. For each integer n, the function
én : T — T, A+ A" is continuous. Then {e, | n € Z} is the
orthonormal basis of L2(T). For f € LP(T). f(n) is denoted by the
n - th Fourier coefficient of f. H? = {f € L?(T) | f(n) = 0(n > 0)}
is called the Hardy space for p € [1,4+o¢]. If ¢ € L>(T), then the
multiplication operator My on L*(T) is defined by

My(f) = of

for f € L*(T). The restriction T of M, on the Hardy space H?(T)
is called the Toeplitz operator with symbol ¢ for ¢ € L>(T). Then
M., is the bilateral shift on the basis {e, | n € Z} of the Hilbert
space L?(T) . The restriction T, of M., on the Hardy space H?(T)
is the unilateral shift on the basis {€¢, | n € N} of the Hardy space
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H?(T). The C*-algebra generated by all Toeplitz operators Ty, with
continuous symbol ¢ is called the Toeplitz algebra 7, but in fact the
Toeplitz algebra 7 is generated by T¢,.

Let M be a cancellative abelian semigroup and G be the Grothen-
dieck enveloping group of M. Since M is cancellative, we can identify
every element in M with its image in the Grothendieck enveloping
group.

For each » € G, define the evaluation homomorphism ¢, : G—T
by setting e, (y) = y(x) for v € G. Clearly {ex | © € G} becomes an
orthonormal basis of the Hilbert space L? (@) The Hilbert subspace
generated by {e, | = € M} is denoted by H2(G). Put P be the
orthogonal projection onto H2(G). For ¢ € L> (@’) we define a map
Ty € BH(G)) by Tu(f) = P(pf) for f € H2(G). We denote
by 7 (M) the C*-subalgebra B(H (G)) genetated by all T, for ¢ €
C’(G) the space of all continuous functions on G. We call it the
generalized Toeplitz algebras.

L.A. Coburn proved his well known theorem in [1] that if v is a
non-unitary isometry in a unital C*-algebra B, then there exists a
unique isometric *-homomorphism ¢ : 7 — B such that ¢(T¢,) = v.

PROPOSITION 4.1. Let M be a cancellative abelian semigroup and
G be its Grothendieck enveloping group. Then T{M) is generated
by T. forallzec M.

Proof. Let P(G) denote a linear span of {e, | z € G}. If ¢ €
P(G), we can have p = 327 A&y, for some 3, € G and \; € C. We
can choose elements z! and z? in M such that y; = 2} — 22 for each
i€ M. Hence we have T, = 5, AiTt-y%_ =3, AiTeszez! . Since P(@)

is norm dense in C(G), {T.. | x € M} generates T (M). O

Furthermore we can see that 7(A4) is unitarily isomorphic to
'+ (M). Let U be a unitary from H*(G) onto 1?(M) defined by
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U(f)=¢;

where £¢(x) is the Fourier coefficient f (x) of f with respect to the
basis {¢, | z € M} of H*(G) for each x € M. Then we have

UT, U*)(E)(2) = La(§)(2)

Since C., (M) and T (M) are generated by {£, | x € M} and
{Te, | x € M}, respectively, C*_, (M) =UT(M)U*.

Now we can consider a reduced semigroup C*-algebra C7, ;(.5) for
S ={0,4,5,8,9,10,12,13,14, ..}. Then S is a really simple, but not
quasi-lattice ordered semigroup. If we consider .S as a subsemigroup
of N, then it generates N. Though it is generated by two elements
4 and 5, the following theorem shows that C,,(S5) is generated by
only one element.

THEOREM 4.2. C},,(5) ts generated by only one single element.
Proof. We define a compact operator Ky

647 n = 07
0, otherwise.

Ko(8,) = {

And then we define a compact operator L; for [ = 1, 2 such as

(58: n =5,

L 517 =

1(0n) {O, otherwise.
6‘].2': n= 107
0, otherwise.

L2(6) = {

Let £ be the left regular isometric representation on ?(5) and put
U=LiLs+ Ko+ Li + Ly. The compact operator algebra K(I%(.9))
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is contained in C_,;(9) because C?_,(9) acts irreducibly on 12(5),

red

and thus U is contained in C}, ,;(.5). We can see that
U(do) = L1L5(30) + Ko(d0) + L1(d0) + L2(dg) = d4.
Similiarly we have that
U(dq) =05, U(ds) =ds.

Furthermore, since Ky(4,) = 0 and L;(4,,) = 0 for n > 5, we have
that
U(én) = ﬁn—i—l-

Therefore the operator U translates the elements of the canonical
orthonormal basis {5, | n € S} of I12(S) to the left, one by one.
If we put the C*-algebra U of C7_;(S) generated by U, then U is
isomorphic to the Toeplitz algebra.

Eventually, £4 and L5 generates C7_,(S), so it is enough to show
that £4 and L5 can be written as U + {suitable operators in I/} in
order to say that U generates C!,,(5). So we consider U* and U®.
Since the terms of U* containing K are removed,

Ut = (L3L:)* + > (LiLs) L (L3Ls) -+ LY
where s, 4 ---+ s, = 3 and 5; may be zero. In order to make up the
gaps of (£3L5)? we define compact operators M; as follows;

b4, n=020,

0, otherwise,

583 n= 4,

0, otherwise,

Mo(8,) = { My(3,) = {

and

dg, N = 5,

612: n =8,

0, otherwise,

Ms(5,) = { Mg(5,) = {

0, otherwise,

and
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b3, n=29,

0, otherwise,

514: n= 10\

0, otherwise.

Mo (6,) = { Mo(8,) = {

Due to the compact operators M, we have
Ly=U*+ M = (L3Ls) M LP(L3L5) - LT

Similarly, L5 = U° 4T for a suitable compact operator 7. There-

fore, U generates C_;(.5). O

[1]

9]

By the Coburn’s result we can get the result.

COROLLARY 4.3 CF,,(5) is isomorphic to the Toeplitz algebta.
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