• 제목/요약/키워드: regression type estimator

검색결과 42건 처리시간 0.025초

A Study on Kernel Type Discontinuity Point Estimations

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.929-937
    • /
    • 2003
  • Kernel type estimations of discontinuity point at an unknown location in regression function or its derivatives have been developed. It is known that the discontinuity point estimator based on $Gasser-M\ddot{u}ller$ regression estimator with a one-sided kernel function which has a zero value at the point 0 makes a poor asymptotic behavior. Further, the asymptotic variance of $Gasser-M\ddot{u}ller$ regression estimator in the random design case is 1.5 times larger that the one in the corresponding fixed design case, while those two are identical for the local polynomial regression estimator. Although $Gasser-M\ddot{u}ller$ regression estimator with a one-sided kernel function which has a non-zero value at the point 0 for the modification is used, computer simulation show that this phenomenon is also appeared in the discontinuity point estimation.

  • PDF

EFFICIENT ESTIMATION OF POPULATION MEAN IN STRATIFIED SAMPLING USING REGRESSION TYPE ESTIMATOR

  • Grover Lovleen Kumar
    • Journal of the Korean Statistical Society
    • /
    • 제35권4호
    • /
    • pp.441-452
    • /
    • 2006
  • Here an efficient regression type estimator for a stratified population mean is proposed under the two-phase sampling scheme. While constructing the proposed estimator, it is assumed that the first auxiliary variable x is directly and highly correlated with the study variable y, and the second auxiliary variable z is directly and highly correlated with the first auxiliary variable x. However the variable z is not directly correlated with the variable y, but they are just correlated with each other only due to their direct and high correlation with the variable x. The proposed regression type estimator is found to be always more efficient than the existing estimators defined under the same situation.

Cox 회귀모형(回歸模型)에서 붓스트랩방법(方法)에 의한 생존함수추정량(生存函數推定量)의 비교연구(比較硏究) (Comparison of Survival Function Estimators for the Cox's Regression Model using Bootstrap Method)

  • 차영준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제4권
    • /
    • pp.1-11
    • /
    • 1993
  • The Cox's regression model is frequently used for covariate effects in survival data analysis, But, much of the statistical work has focused on asymptotic behavior so the small sample evaluation has been neglected. In this paper, we compare the small or moderate sample performances of the survival function estimators for the Cox's regression model using bootstrap method. The smoothed PL type estimator and the Link estimator are slightly better than corresponding the PL type estimator and the Nelson type estimator in the sense of the achieved error rates.

  • PDF

Reexamination of Estimating Beta Coecient as a Risk Measure in CAPM

  • Phuoc, Le Tan;Kim, Kee S.;Su, Yingcai
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제5권1호
    • /
    • pp.11-16
    • /
    • 2018
  • This research examines the alternative ways of estimating the coefficient of non-diversifiable risk, namely beta coefficient, in Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) that is an essential element of assessing the value of diverse assets. The non-parametric methods used in this research are the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator). The Jackknife, the resampling technique, is also employed to validate the results. According to finance literature and common practices, these coecients have often been estimated using Ordinary Least Square (LS) regression method and monthly return data set. The empirical results of this research pointed out that the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) performed much better than Ordinary Least Square (LS) in terms of eciency for large-cap stocks trading actively in the United States markets. Interestingly, the empirical results also showed that daily return data would give more accurate estimation than monthly return data in both Ordinary Least Square (LS) and robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) regressions.

New approach for analysis of progressive Type-II censored data from the Pareto distribution

  • Seo, Jung-In;Kang, Suk-Bok;Kim, Ho-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제25권5호
    • /
    • pp.569-575
    • /
    • 2018
  • Pareto distribution is important to analyze data in actuarial sciences, reliability, finance, and climatology. In general, unknown parameters of the Pareto distribution are estimated based on the maximum likelihood method that may yield inadequate inference results for small sample sizes and high percent censored data. In this paper, a new approach based on the regression framework is proposed to estimate unknown parameters of the Pareto distribution under the progressive Type-II censoring scheme. The proposed method provides a new regression type estimator that employs the spacings of exponential progressive Type-II censored samples. In addition, the provided estimator is a consistent estimator with superior performance compared to maximum likelihood estimators in terms of the mean squared error and bias. The validity of the proposed method is assessed through Monte Carlo simulations and real data analysis.

An Efficient Mallows-Type One-Step GM-Estimator in linear Models

  • Song, Moon-Sup;Park, Changsoon;Nam, Ho-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제27권3호
    • /
    • pp.369-383
    • /
    • 1998
  • This paper deals with a robust regression estimator. We propose an efficient one-step GM-estimator, which has a bounded influence function and a high breakdown point. The main idea of this paper is to use the Mallows-type weights which depend on both the predictor variables and the residuals from a high breakdown initial estimator. The proposed weighting scheme severely downweights the bad leverage points and slightly downweights the good leverage points. Under some regularity conditions, we compute the finite-sample breakdown point and prove the asymptotic normality. Some simulation results and a numerical example are also presented.

  • PDF

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
    • Communications for Statistical Applications and Methods
    • /
    • 제30권6호
    • /
    • pp.531-550
    • /
    • 2023
  • The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

편향 보정 비형태추정량에 관한 연구 (A bias adjusted ratio-type estimator)

  • 오정택;신기일
    • 응용통계연구
    • /
    • 제31권3호
    • /
    • pp.397-408
    • /
    • 2018
  • 표본조사에서는 정확한 모수 추정을 위한 다양한 방법이 개발되었으며 이 중에서 보조정보를 이용한 비추정량 또는 회귀추정량이 흔히 사용된다. 최근 많은 연구가 진행되고 있는 비형태추정량(ratio type estimator)은 비추정량의 단점을 보완하여 추정의 정확성을 향상시키는 것으로 알려져 있다. 그러나 비형태추정량은 편향이 있는 것으로 알려져 있어 이를 해결하기 위한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 편향을 제거하기 위해 비형태추정량에 새로운 모수를 추가한 일반화 비형태추정량(generalized ratio-type estimator)을 제안하였다. 또한 사업체조사와 같이 등분산성을 만족하지 않는 자료에서 추정의 정확성 향상을 위해 모형의 오차에 포함된 분산 모수를 추정하고 제안된 추정량을 적용하는 방법을 제안하였다. 또한 모의실험을 통해 일반화 비형태추정량은 기존의 비추정량에 비해 매우 우수한 결과를 주는 것을 확인하였다.

A BERRY-ESSEEN TYPE BOUND OF REGRESSION ESTIMATOR BASED ON LINEAR PROCESS ERRORS

  • Liang, Han-Ying;Li, Yu-Yu
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1753-1767
    • /
    • 2008
  • Consider the nonparametric regression model $Y_{ni}\;=\;g(x_{ni})+{\epsilon}_{ni}$ ($1\;{\leq}\;i\;{\leq}\;n$), where g($\cdot$) is an unknown regression function, $x_{ni}$ are known fixed design points, and the correlated errors {${\epsilon}_{ni}$, $1\;{\leq}\;i\;{\leq}\;n$} have the same distribution as {$V_i$, $1\;{\leq}\;i\;{\leq}\;n$}, here $V_t\;=\;{\sum}^{\infty}_{j=-{\infty}}\;{\psi}_je_{t-j}$ with ${\sum}^{\infty}_{j=-{\infty}}\;|{\psi}_j|$ < $\infty$ and {$e_t$} are negatively associated random variables. Under appropriate conditions, we derive a Berry-Esseen type bound for the estimator of g($\cdot$). As corollary, by choice of the weights, the Berry-Esseen type bound can attain O($n^{-1/4}({\log}\;n)^{3/4}$).

Weighted Least Absolute Error Estimation of Regression Parameters

  • Song, Moon-Sup
    • Journal of the Korean Statistical Society
    • /
    • 제8권1호
    • /
    • pp.23-36
    • /
    • 1979
  • In the multiple linear regression model a class of weighted least absolute error estimaters, which minimize the sum of weighted absolute residuals, is proposed. It is shown that the weighted least absolute error estimators with Wilcoxon scores are equivalent to the Koul's Wilcoxon type estimator. Therefore, the asymptotic efficiency of the proposed estimator with Wilcoxon scores relative to the least squares estimator is the same as the Pitman efficiency of the Wilcoxon test relative to the Student's t-test. To find the estimates the iterative weighted least squares method suggested by Schlossmacher is applicable.

  • PDF