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Abstract
Pareto distribution is important to analyze data in actuarial sciences, reliability, finance, and climatology. In

general, unknown parameters of the Pareto distribution are estimated based on the maximum likelihood method
that may yield inadequate inference results for small sample sizes and high percent censored data. In this paper,
a new approach based on the regression framework is proposed to estimate unknown parameters of the Pareto
distribution under the progressive Type-II censoring scheme. The proposed method provides a new regression
type estimator that employs the spacings of exponential progressive Type-II censored samples. In addition,
the provided estimator is a consistent estimator with superior performance compared to maximum likelihood
estimators in terms of the mean squared error and bias. The validity of the proposed method is assessed through
Monte Carlo simulations and real data analysis.
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1. Introduction

Since its introduction in Cohen (1963), the progressive Type-II censoring scheme has gained consid-
erable popularity and has been extensively studied in, for instance, Balakrishnan et al. (2003), Wang
(2008), and Seo and Kang (2015). Under this censoring scheme, it is assumed that there are n ran-
domly selected units on a life test. Once the first failure occurs, R1 units are randomly removed from
the n − 1 surviving units. Subsequently, following the second observed failure, R2 units are randomly
removed from the n − 2 − R1 surviving units, and the procedure is continued in this manner. Finally,
at the time of the mth observed failure, all remaining Rm = n − m − R1 − · · · − Rm−1 units are removed
from the test. Here, the number of failures m and Ri (i = 1, . . . ,m) are prefixed. It should be noted
that the case m = n, where R1 = · · · = Rm = 0 corresponds to the complete sample, whereas the case
R1 = · · · = Rm−1 = 0, Rm = n − m corresponds to a conventional Type-II censoring scheme.

In this study, a new estimation method based on the regression framework is proposed under the
progressive Type-II censoring scheme. It focuses on estimations of the unknown parameters in the
Pareto distribution. The cumulative distribution function (cdf) and the probability distribution function
(pdf) of the random variable X with the Pareto distribution are

F(x) = 1 −
(
θ

x

)λ
,

f (x) = λθλx−(λ+1), x > θ, λ > 0, θ > 0,
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respectively, where θ is the scale parameter and λ is the shape parameter. Lu and Tao (2007) proposed
a new estimation by a weight least square method to estimate unknown parameters of the Pareto distri-
bution. Kim et al. (2017) proposed an estimation using a pivotal quantity adopted from the regression
framework for obtaining a consistent estimator for the shape parameter in the Pareto distribution. In
the present study, these methods are extended to the progressive Type-II censoring scheme, and a con-
sistent estimator of the shape parameter is obtained that do not depend on the nuisance parameter θ
and are superior to maximum likelihood estimators (MLEs) in terms of the mean squared error (MSE)
and bias.

The paper is organized as follows. In Section 2, existing methods for estimating the unknown pa-
rameters of the Pareto distribution are presented. In Section 3, a new approach based on the weighted
least squares method is proposed. In Section 4, a Monte Carlo simulation is conducted, and real data
analysis is performed to assess the proposed method. Finally, Section 5 concludes the paper.

2. Revisit to classical inference

This section provides the results of existing inferences for the scale parameter θ and the shape pa-
rameter λ of the Pareto distribution (Balakrishnan and Aggarwala, 2000). Let X1:m:n ≤ · · · ≤ Xm:m:n
be a progressive Type-II censored sample from the Pareto distribution with the censoring scheme
(R1, . . . ,Rm). Then, the corresponding likelihood function is given by

L(θ, λ) ∝ λmθλn
m∏

i=1

x−λ(1+R1:m:n)−1
i:m:n . (2.1)

The MLE θ̂ is the first order statistic of a progressive Type-II sample because the likelihood function
(2.1) is an increasing function of θ. In addition, the MLE of λ is given by

λ̂ =
m∑m

i=1(1 + Ri) log (Xi:m:n) − n log X1:m:n
,

which has the inverse gamma distribution with parameters (m − 1, λm). It can be easily shown by the
pivotal quantity

W(λ) = λ
m∑

i=1

(1 + Ri) log (Xi:m:n) − n log X1:m:n

that has the gamma distribution with parameters (m − 1, 1). Therefore, the MLEs θ̂ and λ̂ are biased
estimators. Alternately, Balakrishnan and Aggarwala (2000) provided estimators of θ and λ, given by

θ̂U =

[
1 − m

n(m − 1)λ̂

]
θ̂,

λ̂U =
(m − 2)

m
λ̂,

respectively. Note that both θ̂U and λ̂U are unbiased and consistent estimators with the variances

Var
(
θ̂U

)
=

θ2m
λn(m − 1)(λn − 2)

,

Var
(
λ̂U

)
=

λ2

m − 3
,

respectively.
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3. Estimation based on regression framework

In this section, a new approach is proposed to obtain an estimator that is superior to the MLE in terms
of MSE and bias.

Let

Yi:m:n = − log [1 − F(xi:m:n)]

= λ log
(Xi:m:n

θ

)
, i = 1, . . . ,m.

Then, Y1:m:n · · ·Ym:m:n is a progressive Type-II censored sample from the standard exponential distri-
bution. Consider the spacing (Viveros and Balakrishnan, 1994)

S i = (Yi:m:n − Yi−1:m:n)
m∑
j=i

(Ri + 1), i = 1, . . . ,m (Y0:m:n ≡ 0),

which are independent and identically distributed standard exponential random variables. Then,

Di:m:n = Yi:m:n − Yi−1:m:n

= λ log
(

Xi:m:n

Xi−1:m:n

)
, i = 2, . . . ,m,

have the exponential distribution with the mean

E(Di:m:n) =

 m∑
j=i

(1 + R j)

−1

,

and can lead to the following linear regression model:

E(Di:m:n) = λ log
(

Xi:m:n

Xi−1:m:n

)
+ εi, i = 2, . . . ,m, (3.1)

where εi is the error term with E(εi) = 0. It should be noted that (3.1) can be considered a simple
regression line with no intercept. That is, the model only has the shape parameter λ. Then, an
estimator can be obtained that does not depend on the nuisance parameter θ, as:

λ̂wl1 =

∑m
i=2 wiE(Di:m:n) log

(
Xi:m:n

Xi−1:m:n

)
∑m

i=2 wi

[
log

(
Xi:m:n

Xi−1:m:n

)]2

by minimizing the squared distance

m∑
i=2

wi

[
E(Di:m:n) − λ log

(
Xi:m:n

Xi−1:m:n

)]2

,

where wi is the weight on each data point. However, the problem with this approach is that it is not
easy to find the weight wi that makes λ̂wl1 an unbiased estimator or a consistent estimator. Instead, the
idea of Kim et al. (2017) is extended to the progressive Type-II censoring scheme here.
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Let

D∗i:m:n = Yi:m:n − Y1:m:n, i = 2, . . . ,m.

Then, by the same argument, another estimator of λ is obtained as

λ̂wl2 =

∑m
i=2 wiE

(
D∗i:m:n

)
log

(
Xi:m:n
X1:m:n

)
∑m

i=2 wi

[
log

(
Xi:m:n
X1:m:n

)]2 ,

where

E
(
D∗i:m:n

)
=

i∑
j=2

 m∑
k= j

(1 + Rk)

−1

, 2 ≤ i ≤ m,

by Theorem 7.2.1 in Balakrishnan and Cramer (2014). To find the weight wi that makes λ̂wl2 a con-
sistent estimator, the following lemma is required:

Lemma 1. Let

Qi:m:n =
D∗i:m:nE

(
D∗i:m:n

)
− E2

(
D∗i:m:n

)
Var

(
D∗i:m:n

) , (3.2)

Ti:m:n =
D∗2i:m:n − E2

(
D∗i:m:n

)
Var

(
D∗i:m:n

) , (3.3)

Ui:m:n =
E2

(
D∗i:m:n

)
Var

(
D∗i:m:n

) ,
where

Var
(
D∗i:m:n

)
=

i∑
j=2

 m∑
k= j

(1 + Rk)

−2

, 2 ≤ i ≤ m,

by Theorem 7.2.1 in Balakrishnan and Cramer (2014). Then,

(a)
1

m2

m∑
i=2

Qi:m:n converges to zero in probability as m→ ∞.

(b)
1

m2

m∑
i=2

Ti:m:n converges to zero in probability as m→ ∞.

(c)
1

m2

m∑
i=2

Ui:m:n does not converges to zero as m→ ∞.

Proof: It is clear that

E

∣∣∣∣∣∣ 1
m2

m∑
i=2

Qi:m:n

∣∣∣∣∣∣
 = 0 and E

∣∣∣∣∣∣ 1
m2

m∑
i=2

Ti:m:n

∣∣∣∣∣∣
 = m − 1

m2 .
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Then, both (3.2) and (3.3) converge in the mean to 0. This implies convergence in probability, Karr
(1993). In addition,

1
m2

m∑
i=2

Ui:m:n =
1

m2

m∑
i=2

{∑i
j=2

[∑m
k= j(1 + Rk)

]−1
}2

∑i
j=2

[∑m
k= j(1 + Rk)

]−2

≥ 1
m2

m∑
i=2

{∑i
j=2

[
m − 1 +

∑m
k= j Rk

]−1
}2

∑i
j=2 (m − i + 1)−2

=
1

m2

m∑
i=2

(i − 1)
 m − i + 1

m − 1 +
∑m

k= j Rk

2

=
1

m2
(
m − 1 +

∑m
k= j Rk

)2

m2
m∑

j=1

j +
m∑

j=1

j3 − 2m
m∑

j=1

j2
 ,

which converges to a constant as m→ ∞. Therefore, it completes the proof. �

Theorem 1. Let wi = 1/Var(D∗i:m:n). Then, the estimator λ̂wl2 is a consistent estimator.

Proof: The estimator λ̂wl2 can be written as

λ̂wl2 = λ

∑m
i=2 D∗i:m:nE

(
D∗i:m:n

)
/Var

(
D∗i:m:n

)
∑m

i=2 D∗2i:m:n/Var
(
D∗i:m:n

)
= λ

∑m
i=2 Qi:m:n +

∑m
i=2 Ui:m:n∑m

i=2 Ti:m:n +
∑m

i=2 Ui:m:n

= λ

∑m
i=2 Qi:m:n/m2 +

∑m
i=2 Ui:m:n/m2∑m

i=2 Ti:m:n/m2 +
∑m

i=2 Ui:m:n/m2 , (3.4)

by Lemma 1, the fraction term in (3.4) converge to 1 in probability as m→ ∞, and this completes the
proof. �

4. Application

In this section, the proposed estimators are assessed by Monte Carlo simulations; in addition, two real
data sets are presented.

4.1. Simulation study

The estimators discussed in Sections 2 and 3 are compared in terms of MSE and bias. Unlike estima-
tors λ̂ and λ̂U , the exact mean and variance of the estimator λ̂wl2 cannot be expressed in a closed form.
Therefore, its MSE and bias are obtained over 10,000 replications. Progressive Type-II censored sam-
ples were generated from the Pareto distribution with λ = 0.5, 1.5 and θ = 1 using the algorithm in
Balakrishnan and Sandhu (1995). The MSEs and biases of other estimators were obtained using their
mean and variance (Table 1). For notational simplicity, the scheme (0, 0, . . . , n − m) is denoted by
((m − 1) ∗ 0, n − m). For instance, (3 ∗ 0, 2) denotes the progressive censoring scheme (0, 0, 0, 2).
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Table 1: MSEs (biases) for estimators of θ and λ

θ λ n m Censoring scheme λ̂ λ̂U λ̂wl2 θ̂ θ̂U

1

0.5

20 20 (20∗0) 0.021 (0.056) 0.015 (0.000) 0.017 (0.002) 0.028 (0.111) 0.013 (0.000)
10 (2∗0, 1, 0, 2, 0, 2, 2∗0, 5) 0.071 (0.125) 0.036 (0.000) 0.045 (0.027) 0.028 (0.111) 0.014 (0.000)

30
30 (30∗0) 0.012 (0.036) 0.009 (0.000) 0.011 (0.000) 0.011 (0.071) 0.005 (0.000)
20 (9∗0, 10, 10∗0) 0.021 (0.056) 0.015 (0.000) 0.016 (−0.005) 0.011 (0.071) 0.005 (0.000)
15 (5, 6∗0, 10, 7∗0) 0.034 (0.077) 0.021 (0.000) 0.023 (−0.006) 0.011 (0.071) 0.005 (0.000)

40
40 (40∗0) 0.008 (0.026) 0.007 (0.000) 0.008 (0.000) 0.006 (0.053) 0.003 (0.000)
30 (10∗0, 5, 7∗0, 3, 10∗0, 2) 0.012 (0.036) 0.009 (0.000) 0.011 (0.001) 0.006 (0.053) 0.003 (0.000)
20 (8∗0, 2∗10, 10∗0) 0.021 (0.056) 0.015 (0.000) 0.016 (−0.009) 0.006 (0.053) 0.003 (0.000)

1.5

20 20 (20∗0) 0.191 (0.167) 0.132 (0.000) 0.152 (0.007) 0.002 (0.034) 0.001 (0.000)
10 (2∗0, 1, 0, 2, 0, 2, 2∗0, 5) 0.643 (0.375) 0.321 (0.000) 0.405 (0.081) 0.002 (0.034) 0.001 (0.000)

30
30 (30∗0) 0.107 (0.107) 0.083 (0.000) 0.095 (0.001) 0.001 (0.023) 0.001 (0.000)
20 (9∗0, 10, 10∗0) 0.191 (0.167) 0.132 (0.000) 0.148 (−0.014) 0.001 (0.023) 0.001 (0.000)
15 (5, 6∗0, 10, 7∗0) 0.303 (0.231) 0.188 (0.000) 0.204 (−0.017) 0.001 (0.023) 0.001 (0.000)

40
40 (40∗0) 0.074 (0.079) 0.061 (0.000) 0.072 (−0.001) 0.001 (0.017) 0.000 (0.000)
30 (10∗0, 5, 7∗0, 3, 10∗0, 2) 0.107 (0.107) 0.083 (0.000) 0.095 (0.002) 0.001 (0.017) 0.000 (0.000)
20 (8∗0, 2∗10, 10∗0) 0.191 (0.167) 0.132 (0.000) 0.147 (−0.028) 0.001 (0.017) 0.000 (0.000)

MSE = mean squared error.

Table 2: Estimates for real data

λ̂ λ̂U λ̂wl2 θ̂ θ̂U
Device 0.17350 0.13012 0.09001 0.00980 0.00657

Business 2.16083 1.72867 1.79410 1.01000 0.97538

Table 1 shows that the proposed estimator λ̂wl2 is more efficient than the MLE λ̂ in terms of MSE
and bias, while it has somewhat higher values of the MSE and bias, compared with λ̂U . As expected,
the estimator θ̂U is more efficient than the MLE θ̂ in terms of the MSE and bias. In addition, the MSE
of all estimators decrease with an increase in the sample size n as well as with a decrease in the size
n − m of the unobserved (censored) data set for a fixed sample size n. It should be noted that the
consistent estimator λ̂wl2 does not depend on the nuisance parameter θ as well as more efficient than
the MLE λ̂ in terms of the MSE and bias.

4.2. Real data

Two real data sets (device lifetime and business failure) are considered in Fernandez (2014). Wu et
al. (2007) generated a progressive Type-II censored sample

0.0098, 0.0376, 0.0661, 0.0849, 0.1112, 0.1447, 0.1904, 0.2463

with the censoring scheme (1, 0, 2, 0, 3, 2, 0, 4) from the device lifetime data. The business failure data
in Nigm and Hamdy (1987) represents the time (in years) for which a business operates until failure. A
sample of fifteen businesses was used. Fernandez (2014) used a progressive Type-II censored sample

1.01, 1.05, 1.08, 1.14, 1.28, 1.30, 1.33, 1.43, 1.59, 1.62

with the censoring scheme (9∗0, 5) from the business failure data. Here, progressive Type-II censored
samples were used to obtain the estimates discussed in Sections 2 and 3 (Table 2).

5. Conclusions

A new approach was proposed to estimate the unknown parameters of the Pareto distribution under
the progressive Type-II censoring scheme in the regression framework; subsequently, it was proved
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that the proposed estimator, λ̂wl2 is consistent. In addition, the estimator λ̂wl2 does not depend on the
nuisance parameter θ as well as satisfactory in terms of MSE and bias. The proposed approach can
be applied to other censoring schemes and life-time distributions despite showing a somewhat lower
performance than the estimator λ̂U in simulation study; however, it can be a very good alternative if
an unbiased estimator cannot be obtained from the maximum likelihood or pivotal-based methods.
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