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A BERRY-ESSEEN TYPE BOUND OF REGRESSION
ESTIMATOR BASED ON LINEAR PROCESS ERRORS

Han-Ying Liang and Yu-Yu Li

Abstract. Consider the nonparametric regression model Yni = g(xni)+
ϵni (1 ≤ i ≤ n), where g(·) is an unknown regression function, xni are

known fixed design points, and the correlated errors {ϵni, 1 ≤ i ≤ n} have
the same distribution as {Vi, 1 ≤ i ≤ n}, here Vt =

P∞
j=−∞ ψjet−j with

P∞
j=−∞ |ψj | < ∞ and {et} are negatively associated random variables.

Under appropriate conditions, we derive a Berry-Esseen type bound for
the estimator of g(·). As corollary, by choice of the weights, the Berry-

Esseen type bound can attain O(n−1/4(log n)3/4).

1. Introduction

Consider the nonparametric regression model

(1.1) Yni = g(xni) + ϵni, i = 1, . . . , n,

where g is an unknown regression function defined on A, xni are known fixed
design points, and ϵni are random errors. As an estimate of g, we consider the
following weighted regression estimator:

(1.2) gn(x) =
n∑

i=1

wniYni, x ∈ A,

where wni = wni(x) are weight functions.
The above estimator was first proposed by Georgiev [8] and subsequently

have been studied by many authors. For instance, when ϵni are assumed to
be independent, consistency and asymptotic normality have been studied by
Georgiev and Greblicki [10], Georgiev [9] and Müller [17] among others. Results
for the case when ϵni are dependent have also been studied by various authors.
Fan [7] extended the work of Georgiev [9] and Müller [17] in the estimation of
the regression model to the case where {ϵni} form an Lq-mixingale sequence for
some 1 ≤ q ≤ 2. Roussas [19] discussed strong consistency and quadratic mean
consistency for gn(x) under mixing conditions. Roussas et al. [22] established
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asymptotic normality of gn(x) assuming that the errors are from a strictly
stationary stochastic process and satisfy the strong mixing condition. Tran et
al [26] discussed again asymptotic normality of gn(x) assuming that the errors
form a linear time series, more precisely, a weakly stationary linear process
based on a martingale difference sequence.

In this paper, we consider the model (1.1) and assume the following form
for {ϵni}:

(A1) For each n, {ϵni, 1 ≤ i ≤ n} have the same distribution as V1, . . . , Vn,
where Vt =

∑∞
j=−∞ ψjet−j and {et} are identically distributed, neg-

atively associated random variables with Eei = 0. Here {ψj} is a
sequence of real numbers with

∑∞
j=−∞ |ψj | < ∞.

Here, a finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively
associated (NA) if, for every pair of disjoint subsets A and B of {1, 2, . . . , n},
we have

Cov(f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0,

whenever f1 and f2 are coordinatewise increasing provided the covariance ex-
ists. An infinite family of random variables is said to be NA, if every finite
subfamily is NA.

The notion of negative association was first introduced by Alam and Saxena
[1]. Joag-Dev and Proschan [11] showed that many well known multivari-
ate distributions possess the NA property. Examples include (a) multinomial,
(b) convolution of different multinomials, (c) multivariate hypergeometric, (d)
Dirichlet, (e) Dirichlet compound multinomial, (f) negatively correlated nor-
mal distribution, (g) permutation distribution, (h) random sampling without
replacement, and (i) joint distribution of ranks. The significance of NA, how-
ever, seems to come from the perception that it is an appropriate model when
several species compete for the same limited resources. Because of its wide
applications in multivariate statistical analysis and systems reliability, the no-
tion of NA has recently received considerable attention. We refer to Joag-Dev
and Proschan [11] for fundamental properties, Matula [16] for the three se-
ries theorem, Shao [23] for the Rosenthal-type inequality and the Kolmogorov
exponential inequality, and Su et al. [25] for a moment inequality and weak
convergence, Shao and Su [24] for the law of the iterated logarithm, Liang and
Su [15] and Liang [12] as well as Baek et al. [2] for complete convergence, Liang
and Baek [13] for some strong law, Roussas [20] studied the central limit theo-
rems for weak stationary NA random fields. Asymptotic properties of estimates
related to NA samples have also been studied by some authors. Cai and Rous-
sas [3] gave uniform strong consistency, convergence rates and the asymptotic
distribution of the Kaplan-Meier estimator for observations under randomly
censored failure times. In Cai and Roussas [4], they established Berry-Esseen
bounds for a smooth estimate of the distribution function; Roussas [21] derived
the asymptotic normality of the kernel estimate of the probability density func-
tion; Chen et al. [6] studied strong consistency of estimator in heteroscedastic
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regression model under NA samples; Yang [27] studied uniformly asymptotic
normality of the regression weighted estimator for NA samples; Liang and Jing
[14] discussed the asymptotic properties of gn(x) under NA setting. In par-
ticular, Liang and Jing [14] studied the asymptotic normality of gn(x) under
assumption (A1) for Vt =

∑∞
j=0 ψjet−j setting.

In this paper, we further investigate model (1.1) and derive a Berry-Esseen
type bound for the estimator gn(x) of g(·) under the errors {ϵni} satisfy as-
sumption (A1). By choice of the weights, the Berry-Esseen type bound can
attain O(n−1/4(log n)3/4).

The layout of the paper is as follows. The main result is presented in Sec-
tion 2. In Section 3, some preliminary lemmas are given. The proofs of the main
result and preliminary lemmas are provided in Sections 4 and 5, respectively.

In the sequel, let C, c, c1, . . . denote generic finite positive constants, whose
values are unimportant and may change from line to line. For random variables
X and Y , X

D= Y means that the distribution of X is the same as that of Y .
All limits are taken as the sample size n tends to ∞, unless specified otherwise.

2. The main result

In order to formulate the main result, we now give the following assumptions.
(A2) The weights satisfy

∑n
i=1 |wni(x)| ≤ C, wn := max1≤i≤n |wni(x)| =

O(σ2
n(x)), where σ2

n(x) := Var(gn(x)) > 0.
(A3) There exist positive integers p := p(n) and q := q(n) such that for

sufficiently large n, p + q ≤ 3n, qp−1 ≤ c < ∞.

Let γin → 0 (i = 1, 2, 3) and u(q) → 0, where γ1n = nqp−1wn, γ2n =
pwn, γ3n = n(

∑
|j|>n |ψj |)2 and u(q) = supj≥1

∑
|i−j|≥q |Cov(ei, ej)|.

Our main result is as follows.

Theorem 2.1. Suppose that (A1)-(A3) are satisfied. If E|e0|2+δ < ∞ for
some δ > 0, then, for each x ∈ A, we have

sup
u

|P (σ−1
n (x){gn(x) − Egn(x)} ≤ u) − Φ(u)| = O(an),

where an = (γ1/2
1n +γ

1/2
2n )(log n)1/2+γ

δ/2
2n +γ

1/3
3n +u1/3(q)+n−1+((nqp−1)−δ/2+

p−δ/2)(log n)(δ−2)/2 → 0, Φ(u) represents the standard normal distribution
function.

Corollary 2.1. Suppose that (A1)-(A2) are satisfied. Let

sup
n≥1

n7/8(log n)−9/8
∑
|j|>n

|ψj | < ∞

and u(n) = O(n9/4e−3n/4). If E|e0|3 < ∞ and wn = O(n−1), then for each
x ∈ A, we have

sup
u

|P (σ−1
n (x){gn(x) − Egn(x)} ≤ u) − Φ(u)| = O(n−1/4(log n)3/4).
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Corollary 2.2. Suppose that (A1) is satisfied, and that spectral density func-
tion τ(w) of Vi is bounded away from zero and infinity, i.e., 0 < c1 ≤ τ(w) <
∞, for w ∈ (π, π]. Let supn≥1 n7/8(log n)−9/8

∑
|j|>n |ψj | < ∞ and u(n) =

O(n9/4e−3n/4). If E|e0|3 < ∞, wn = O(n−1) and n
∑n

i=1 w2
ni(x) ≥ c0 > 0,

then, for each x ∈ A, we have

sup
u

|P (σ−1
n (x){gn(x) − Egn(x)} ≤ u) − Φ(u)| = O(n−1/4(log n)3/4).

Remark 2.1. (a) In Theorem 2.1, we use u(q) → 0, which is easily satisfied.
For example:
(i) If u(1) < ∞ (cf. Roussas [21]), then u(q) → 0 as q → ∞.
(ii) For stationary NA sequence, Cai and Roussas [4] use the covari-

ance coefficient: u′(n) :=
∑∞

j=n |cov(e1, ej+1)|1/3 and u′(1) < ∞.
In this case, we have |cov(e1, ej+1)| = o(j−3). Hence

u(q) :=
∞∑

j=q

|cov(e1, ej+1)| = O(
∞∑

j=q

|cov(e1, ej+1)|1/3j−2) = O(q−2).

(b) In Roussas et al. [22], the weights are required to satisfy the con-
ditions:

∑n
i=1 |wni(x)| ≤ C, max1≤i≤n |wni(x)| = O(

∑n
i=1 w2

ni(x)),∑n
i=1 w2

ni(x) = O(σ2
n(x)). Clearly, these conditions imply Assump-

tion (A2).
In addition, if we choose

wni(x) =
xn,i − xn,i−1

hn
K(

x − xn,i

hn
),

where {hn} is a sequence of positive constants tending to 0 and nhn →
∞, and the design points satisfy 0 = xn,0 ≤ xn,1 ≤ · · · ≤ xn,n = 1, this
weight also was used by Tran et al. [26]. Assume that
(iii) there exist positive constants c1 and c2 such that c1n

−1 ≤ xn,i −
xn,i−1 ≤ c2n

−1 for i = 1, 2, . . . , n,
(iv) K(x) is nonnegative, bounded and continuous almost everywhere

on R and has a majorant; that is, K(x) ≤ H(x) all x ∈ R, where H
is symmetric, bounded, nonincreasing on [0,∞) with

∫
H(y)dy <

∞, where the integral is over R.
(v) {ϵni} are stationary with Eϵni = 0 and its spectral density func-

tion f(w) is bounded away from zero and infinity, i.e., 0 < c3 ≤
f(w) < ∞ for w ∈ (π, π].

Note that (v) implies that

σ2
n(x) = E[

n∑
i=1

wni(x)ϵni]2 =
∫ π

−π

f(w)|
n∑

k=1

wnk(x)e−ikw|2dw ≥ c4

n∑
i=1

w2
ni(x).
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While, by using Lemma 3.1 in Tran et al. [26], (iii) and (iv) im-
ply max1≤i≤n |wni(x)| ≤ C/nhn,

∑n
i=1 wni(x) ≤ C and

1
hn

n∑
i=1

(xn,i − xn,i−1)K2(
x − xn,i

hn
) →

∫ ∞

−∞
K2(u)du > 0.

Thus σ2
n(x) ≥ c4

∑n
i=1 w2

ni(x) ≥ c5
nhn

. Hence max1≤i≤n |wni(x)| =
o(σ2

n(x)), which shows that (A2) is mild.
(c) In Roussas et al. [22] (cf. (2.21) there), they assume that

nqp−1
n∑

i=1

w2
ni(x) → 0, p2

n∑
i=1

w2
ni(x) → 0.

Obviously, the limits above are stronger than γ1n → 0 and γ2n →
0 here, which were also used by Yang [27]. Under some regularity
conditions, γ3n → 0 holds with the usual AR, MA and ARMA processes
which are extensively used to model serially correlated data.

3. Some preliminary lemmas

We write σ2
n = σ2

n(x) and

Sn := σ−1
n {gn(x) − Egn(x)} D= σ−1

n

n∑
i=1

wniVi

= σ−1
n

n∑
i=1

wni

n∑
j=−n

ψjei−j + σ−1
n

n∑
i=1

wni

∑
|j|>n

ψjei−j

:= S1n + S2n.(3.3)

Note that

S1n = σ−1
n

n∑
i=1

wni

n∑
j=−n

ψjei−j =
2n∑

l=1−n

σ−1
n

( min{n,l+n}∑
i=max{1,l−n}

wniψi−l

)
el

:=
2n∑

l=1−n

σ−1
n tnlel.

Set Znl = σ−1
n tnlel, l = 1 − n, 2 − n, . . . , 2n. Then S1n =

∑2n
l=1−n Znl. Let

k = [ 3n
p+q ] and

(3.4) S1n = S′
1n + S′′

1n + S′′′
1n,

where 
S′

1n =
∑k

m=1 ynm, ynm =
∑km+p−1

i=km
Zni,

S′′
1n =

∑k
m=1 y′

nm, y′
nm =

∑lm+q−1
i=lm

Zni,

S′′′
1n = y′

nk+1, y′
nk+1 =

∑2n
i=k(p+q)−n+1 Zni,
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km = (m − 1)(p + q) + 1 − n, lm = (m − 1)(p + q) + p + 1 − n, m = 1, . . . , k.
From (3.3) and (3.4) we have

(3.5) Sn = S′
1n + S′′

1n + S′′′
1n + S2n.

Lemma 3.1. Suppose that (A1)-(A3) are satisfied. If Ee2
0 < ∞, then

E(S′′
1n)2 ≤ Cγ1n, E(S′′′

1n)2 ≤ Cγ2n, E(S2n)2 ≤ Cγ3n.

Lemma 3.2. Suppose that (A1)-(A3) are satisfied. Set s2
n =

∑k
m=1 Var(ynm).

If Ee2
0 < ∞, then

|s2
n − 1| ≤ C(γ1/2

1n + γ
1/2
2n + γ

1/2
3n + u(q)).

Let ηnm,m = 1, 2, . . . , k be independent random variables and ηnm
D= ynm for

m = 1, 2, . . . , k. Put Tn =
∑k

m=1 ηnm.

Lemma 3.3. Under the assumptions of Theorem 2.1, we have

sup
u

|P (Tn/sn ≤ u) − Φ(u)| ≤ Cγ
δ/2
2n .

Lemma 3.4. Under the assumptions of Theorem 2.1, we have

sup
u

|P (S′
1n ≤ u) − P (Tn ≤ u)| ≤ C{γδ/2

2n + u1/3(q)}.

Lemma 3.5. Under the assumptions of Theorem 2.1, we have

P (|S′′
1n| > cµn) ≤ C{n−1 + (nqp−1)−δ/2(log n)(δ−2)/2},(3.6)

P (|S′′′
1n| > cνn) ≤ C{n−1 + p−δ/2(log n)(δ−2)/2},(3.7)

P (|S2n| > τn) ≤ Cγ
1/3
3n ,(3.8)

where µn = γ
1/2
1n (log n)1/2, νn = γ

1/2
2n (log n)1/2, τn = γ

1/3
3n .

Lemma 3.6. Let X and Y be random variables. Then for any a > 0

sup
u

|P (X + Y ≤ u) − Φ(u)| ≤ sup
u

|P (X ≤ u) − Φ(u)| + a√
2π

+ P (|Y | > a).

The proof of Lemma 3.6 can be found in Chang and Rao [5].

4. Proof of Theorem 2.1

We observe that
sup

u
|P (S′

1n ≤ u) − Φ(u)|

≤ sup
u

|P (S′
1n ≤ u) − P (Tn ≤ u)| + sup

u
|P (Tn ≤ u) − Φ(

u

sn
)|

+ sup
u

|Φ(
u

sn
) − Φ(u))|

:= J1n + J2n + J3n.
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From Lemma 3.4 we have J1n ≤ C(γδ/2
2n +u1/3(q)), Lemma 3.3 yields that J2n ≤

Cγ
δ/2
2n , according to Lemma 3.2 we obtain that

J3n = |Φ(u/sn) − Φ(u))|
≤ C|s2

n − 1|/s2
n

≤ C|s2
n − 1| ≤ C(γ1/2

1n + γ
1/2
2n + γ

1/2
3n + u(q)).

Therefore

sup
u

|P (S′
1n ≤ u) − Φ(u)| ≤ C{γ1/2

1n + γ
1/2
2n + γ

δ/2
2n + γ

1/2
3n + u1/3(q)}

and from Lemmas 3.5 and 3.6 we have
sup

u
|P (Sn ≤ u) − Φ(u)|

≤ sup
u

|P (S′
1n + S′′

1n + S′′′
1n + S2n ≤ u) − Φ(u)|

≤ sup
u

|P (S′
1n ≤ u) − Φ(u)| + (µn + νn + τn)/

√
2π

+ P (|S′′
1n + S′′′

1n + S2n| > µn + νn + τn)

≤ C{γ1/2
1n + γ

1/2
2n + γ

δ/2
2n + γ

1/2
3n + u1/3(q)} + µn + νn + τn

+ P (|S′′
1n| > µn) + P (|S′′′

1n| > νn) + P (|S2n| > τn)

= O

(
(γ1/2

1n + γ
1/2
2n )(log n)1/2 + γ

δ/2
2n + γ

1/3
3n + u1/3(q) + n−1

+ ((nqp−1)−δ/2 + p−δ/2)(log n)(δ−2)/2

)
= O(an).

Proof of Corollary 2.1. In Theorem 2.1, taking δ = 1, p = [n1/2(log n)1/2],
q = [log n], then

u(q) = O(n−3/4(log n)9/4) by u(n) = O(n9/4e−3n/4);

γ
1/3
3n = n−1/4(log n)3/4

(
n7/8(log n)−9/8

∑
|j|>n

|ψj |
)2/3

= O(n−1/4(log n)3/4)

by supn≥1 n7/8(log n)−9/8
∑

|j|>n |ψj | < ∞; γ
1/2
1n = γ

1/2
2n = n−1/4(log n)1/4 by

wn = O(n−1).
Therefore, the conclusion follows from Theorem 2.1. ¤

Proof of Corollary 2.2. Note that

σ2
n(x) = E(

n∑
k=1

wnkVk)2 =
∫ π

−π

τ(w)
∣∣∣ n∑

k=1

wnke−ikw
∣∣∣2dw ≥ C

n∑
k=1

w2
nk.
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Hence, from n
∑n

i=1 w2
ni(x) ≥ c0 > 0 and wn = O(n−1), it follows that

wn ≤ C

n∑
i=1

w2
ni(x) = O(σ2

n(x)) and
n∑

i=1

|wni(x)| ≤ C,

i.e., (A2) is satisfied. The rest proofs are the same as the proof of Corollary
2.1. ¤

5. Proofs of lemmas

Lemma 5.1. Let {Xj , 1 ≤ j ≤ n} be NA random variables with EXj = 0 and
E|Xj |p < ∞ for some p > 1, and let {aj , j ≥ 1} be a sequence of real numbers.
Then, there exist Ap > 0 and Bp > 0 such that E max1≤k≤n |

∑k
j=1 ajXj |p ≤

Ap

∑n
j=1 E|ajXj |p for 1 < p ≤ 2 and

E max
1≤k≤n

∣∣∣∣ k∑
j=1

ajXj

∣∣∣∣p ≤ Bp

{ n∑
j=1

E|ajXj |p+
( n∑

j=1

E(ajXj)2
)p/2}

for p > 2.

From Theorem 2 of Shao [23], it is easy to prove Lemma 5.1.

Lemma 5.2 (Yang [27]). Suppose that {Xj , j ≥ 1} is a sequence of NA random
variables.

(a) Let {aj , j ≥ 1} be a sequence of real numbers, 1 = m0 < m1 < · · · <
mk = n. Denote by Yl :=

∑ml

j=ml−1+1 ajXj for 1 ≤ l ≤ k. Then∣∣∣∣E exp
{

it
k∑

l=1

Yl

}
−

k∏
l=1

exp{itYl}
∣∣∣∣ ≤ 4t2

∑
1≤s<j≤n

|asaj ||Cov(Xs, Xj)|.

(b) Let EXj = 0 and |Xj | ≤ b a.s. Set ∆n =
∑n

j=1 EX2
j . Then, for any

ϵ > 0,

P (|
n∑

j=1

Xj | ≥ ϵ) ≤ 2 exp
{
− ϵ2

2(2∆n + 2bϵ)

}
.

Proof of Lemma 3.1. According to the definition of S′′
1n, from Lemma 5.1 and

(A1)-(A2) we have

E(S′′
1n)2 = E(

k∑
m=1

lm+q−1∑
i=lm

Zni)2

≤ C
k∑

m=1

lm+q−1∑
i=lm

E(Z2
ni)

= C
k∑

m=1

lm+q−1∑
i=lm

σ−2
n t2niEe2

i
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≤ C
k∑

m=1

lm+q−1∑
i=lm

σ−2
n

( min{n, i+n}∑
j=max{1, i−n}

wnjψj−i

)2

≤ C

k∑
m=1

lm+q−1∑
i=lm

wn

( min{n, i+n}∑
j=max{1, i−n}

|ψj−i|
)2

≤ Ckqwn

( ∞∑
j=−∞

|ψj |
)2

≤ Cnqp−1wn = Cγ1n.

Similarly,

E(S′′′
1n)2 = E

( 2n∑
i=k(p+q)−n+1

Zni

)2

≤ C

2n∑
i=k(p+q)−n+1

σ−2
n t2niEe2

i

≤ C
2n∑

i=k(p+q)−n+1

wn

( min{n, i+n}∑
j=max{1, i−n}

|ψj−i|
)2

≤ C[3n − k(p + q)]wn

( ∞∑
j=−∞

|ψj |
)2

≤ Cpwn = Cγ2n.

As to S2n, (A2) and Ee2
0 < ∞ yield that

ES2
2n = E

∣∣∣∣σ−1
n

n∑
i1=1

wni1

∑
|j1|>n

ψj1ei1−j1

∣∣∣∣∣∣∣∣σ−1
n

n∑
i2=1

wni2

∑
|j2|>n

ψj2ei2−j2

∣∣∣∣
≤ CE

{ n∑
i1=1

|wni1 |
n∑

i2=1

∣∣∣∣ ∑
|j1|>n

ψj1ei1−j1

∣∣∣∣∣∣∣∣ ∑
|j2|>n

ψj2ei2−j2

∣∣∣∣}

≤ Cn

( ∑
|j|>n

|ψj |
)2

= Cγ3n.

¤

Proof of Lemma 3.2. Let Γn =
∑

1≤i<j≤k Cov(yni, ynj), then s2
n = E(S′

1n)2 −
2Γn. Note that ES2

n = 1, so

E(S′
1n)2 = E[Sn − (S′′

1n + S′′′
1n + S2n)]2

= 1 + E(S′′
1n + S′′′

1n + S2n)2 − 2ESn(S′′
1n + S′′′

1n + S2n).



1762 HAN-YING LIANG AND YU-YU LI

Hence, from Lemma 3.1 we have

(5.9)

|E(S′
1n)2 − 1|

≤ E(S′′
1n + S′′′

1n + S2n)2 + 2|ESn(S′′
1n + S′′′

1n + S2n)|

≤ E(S′′
1n + S′′′

1n + S2n)2 + 2(ES2
n)1/2[E(S′′

1n + S′′′
1n + S2n)2]1/2

≤ {[E(S′′
1n)2]1/2 + [E(S′′′

1n)2]1/2 + (ES2
2n)1/2}2

+ 2{[E(S′′
1n)2]1/2 + [E(S′′′

1n)2]1/2 + (ES2
2n)1/2}

≤ (γ1/2
1n + γ

1/2
2n + γ

1/2
3n )2 + 2(γ1/2

1n + γ
1/2
2n + γ

1/2
3n )

≤ C(γ1/2
1n + γ

1/2
2n + γ

1/2
3n ).

On the other hand,
(5.10)

|Γn|

= |
∑

1≤i<j≤k

Cov(yni, ynj)|

≤
∑

1≤i<j≤k

ki+p−1∑
s=ki

kj+p−1∑
t=kj

|Cov(Zns, Znt)|

≤
k−1∑
i=1

ki+p−1∑
s=ki

k∑
j=i+1

kj+p−1∑
t=kj

min{n,s+n}∑
u=max{1,s−n}

min{n, t+n}∑
v=max{1,t−n}

σ−2
n |wnuwnv||ψu−sψv−t||Cov(es, et)|

≤ C

k−1∑
i=1

ki+p−1∑
s=ki

min{n,s+n}∑
u=max{1,s−n}

|ψu−s||wnu|
k∑

j=i+1

kj+p−1∑
t=kj

| Cov(es, et)|
min{n,t+n}∑

v=max{1,t−n}

|ψv−t|

≤ C
k−1∑
i=1

ki+p−1∑
s=ki

min{n,s+n}∑
u=max{1,s−n}

|ψu−s||wnu|
∑

t: |t−s|≥q

|Cov(es, et)|

≤ Cu(q)
k−1∑
i=1

ki+p−1∑
s=ki

n∑
u=1

|wnu||ψu−s|

≤ Cu(q).

Therefore, (5.9) and (5.10) follow that

|s2
n − 1| ≤ C(γ1/2

1n + γ
1/2
2n + γ

1/2
3n + u(q)).

¤

Proof of Lemma 3.3. By using Berry-Esseen inequality (cf. Petrov [18], p. 154,
Theorem 5.7) we have

sup
u

|P (Tn/sn ≤ u) − Φ(u)| ≤ C
k∑

m=1

E|ηnm|2+δ/s2+δ
n .
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While, according to Lemma 5.1, from (A1) and (A2) it follows that

k∑
m=1

E|ηnm|2+δ

≤ C
k∑

m=1

{ km+p−1∑
j=km

∣∣∣∣ min{n,j+n}∑
i=max{1,j−n}

σ−1
n wniψi−j

∣∣∣∣2+δ

E|ej |2+δ

+
[ km+p−1∑

j=km

( min{n,j+n}∑
i=max{1,j−n}

σ−1
n wniψi−j

)2

Ee2
j

]1+δ/2}

≤ Cσ−(2+δ)
n

k∑
m=1

km+p−1∑
j=km

min{n, j+n}∑
i=max{1, j−n}

|wni||ψi−j | ·
∣∣∣∣ min{n, j+n}∑

i=max{1, j−n}

wniψi−j

∣∣∣∣1+δ

+ C
k∑

m=1

[ km+p−1∑
j=km

( min{n,j+n}∑
i=max{1,j−n}

σ−1
n wniψi−j

)2

·
( km+p−1∑

j=km

( min{n,j+n}∑
i=max{1,j−n}

σ−1
n wniψi−j

)2)δ/2
]

≤ C

{
wδ/2

n

n∑
i=1

|wni|
( k∑

m=1

km+p−1∑
j=km

|ψi−j |
)

+ (pwn)δ/2
k∑

m=1

[ km+p−1∑
j=km

( min{n,j+n}∑
i=max{1,j−n}

|wniψi−j |
)
·
( min{n,j+n}∑

i=max{1,j−n}

σ−2
n |wniψi−j |

)]}
≤ C{wδ/2

n + (pwn)δ/2}

≤ C(pwn)δ/2 = Cγ
δ/2
2n .

Note that Lemma 3.2 implies s2
n → 1 and therefore

sup
u

|P (Tn/sn ≤ u) − Φ(u)| ≤ Cγ
δ/2
2n .

¤

Proof of Lemma 3.4. Assume that φ(t) and ψ(t) are the characteristic function
of S′

n and Tn, respectively. By Esseen inequality (cf. Petrov [18], p. 146,
Theorem 5.3), for any T > 0

(5.11)

sup
u

|P (S′
n ≤ u) − P (Tn ≤ u)|

≤
∫ T

−T

|φ(t) − ψ(t)
t

|dt

+ T sup
u

∫
|u|≤C

T

|P (Tn ≤ u + y) − P (Tn ≤ u)|dy

:= I1n + I2n.
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According to Lemma 5.2(a), following the line as in (5.10) we have∣∣∣∣φ(t) − ψ(t)
t

∣∣∣∣
= |E exp{itS′

1n} − Πk
m=1E exp{itynm}|

≤ 4t2
k−1∑
i=1

ki+p−1∑
s=ki

k∑
j=i+1

kj+p−1∑
t=kj

min{n, s+n}∑
u=max{1, s−n}

min{n, t+n}∑
v=max{1, t−n}

σ−2
n | wnuwnv|| ψu−sψv−t|| Cov(es, et)|

≤ Ct2u(q).

Therefore I1n ≤ Cu(q)T 2. On the other hand, from Lemmas 3.2 and 3.3 it
follows that

sup
u

|P (Tn ≤ u + y) − P (Tn ≤ u)|

≤ sup
y

|P (Tn/sn ≤ (u + y)/sn) − Φ((u + y)/sn)|

+ sup
u

|P (Tn/sn ≤ u/sn) − Φ(u/sn)| + sup
u

|Φ((u + y)/sn) − Φ(u/sn)|

≤ C{γδ/2
2n + |y|/sn} ≤ C{γδ/2

2n + |y|}.

Therefore I2n ≤ C(γδ/2
2n + 1/T ) and choosing T = u−1/3(q) from (5.11) we

obtain that

sup
u

|P (S′
n ≤ u) − P (Tn ≤ u)| ≤ C(γδ/2

2n + u1/3(q)).

¤

Proof of Lemma 3.5. Note that

S′′
1n =

k∑
m=1

lm+q−1∑
j=lm

σ−1
n tnjej =

k∑
m=1

lm+q−1∑
j=lm

σ−1
n (t+nj − t−nj)ej ,

where a+ = max{0, a}, a− = min{0,−a}, so, without loss of generality, we
assume that tnj ≥ 0 for j ≥ 1 and n ≥ 1. Let

αnj = −bnI(Znj < −bn) + ZnjI(|Znj | ≤ bn) + bnI(Znj > bn),
α′

nj = (Znj + bn)I(Znj < −bn) + (Znj − bn)I(Znj > bn),

βnj = αnj − Eαnj , β′
nj = α′

nj − Eα′
nj ,

where bn > 0, which will be specialized later. It is clear that {βnj , j ≥ 1} and
{β′

nj , j ≥ 1} are mean zero NA sequences from the definition of αnj and α′
nj .

Firstly, we prove (3.6). Taking bn = γ
1/2
1n (log n)−1/2. Set

Hn =
k∑

m=1

lm+q−1∑
j=lm

βnj , H ′
n =

k∑
m=1

lm+q−1∑
j=lm

β′
nj .

Then S′′
1n = Hn + H ′

n and

(5.12) P (|S′′
1n| > cµn) ≤ P (|Hn| > cµn/2) + P (|H ′

n| > cµn/2).



A BERRY-ESSEEN TYPE BOUND OF REGRESSION ESTIMATOR 1765

To evaluate P (|Hn| > cµn/2), we shall use Lemma 5.2(b). Note that |βnj | ≤
2bn and the proof of Lemma 3.1 shows that

∆1n :=
k∑

m=1

lm+q−1∑
j=lm

E(β2
nj) ≤

k∑
m=1

lm+q−1∑
j=lm

E(Z2
nj) ≤ Cγ1n.

Then, by using Lemma 5.2(b), for large c > 0 we have
(5.13)

P
(
|Hn| >

cµn

2

)
≤ 2 exp

{
− c2µ2

n

8(2∆1n + bnµn)

}
≤ 2 exp{−cc1 log n} ≤ Cn−1.

We observe that

E(β′
nj)

2 ≤ E(α′
nj)

2 ≤ 2E(Z2
nj + b2

n)I(|Znj | > bn)

≤ 4b−δ
n E|Znj |2+δ ≤ C(σ−1

n |tnj |)2+δb−δ
n .

Hence, by using Lemma 5.1 we have

P
(
|H ′

n| >
cµn

2

)
≤ C

E(H ′
n)2

µ2
n

≤ Cµ−2
n

k∑
m=1

lm+q−1∑
j=lm

(σ−1
n |tnj |)2+δb−δ

n

≤ C
γ1nw

δ/2
n

µ2
nbδ

n

≤ C(nqp−1)−δ/2(log n)(δ−2)/2.(5.14)

Therefore, (5.13) and (5.14) follow (3.6).

Next we prove (3.7). Following the line as for (3.6). Choosing

bn = γ
1/2
2n (log n)−1/2.

Set Qn =
∑2n

j=k(p+q)−n+1 βnj , Q′
n =

∑2n
j=k(p+q)−n+1 β′

nj . Hence S′′′
1n = Qn +

Q′
n. Note that

∆2n :=
2n∑

j=k(p+q)−n+1

Eβ2
nj ≤

2n∑
j=k(p+q)−n+1

EZ2
nj ≤ Cγ2n.

So, by using Lemma 5.2(b), for large c > 0, we have
(5.15)

P
(
|Qn| >

cνn

2

)
≤ 2 exp

{
− c2ν2

n

8(2∆2n + bnνn)

}
≤ C exp{−cc2 log n} ≤ Cn−1.

From E(β′
nj)

2 ≤ C(σ−1
n |tnj |)2+δb−δ

n , and using Lemma 5.1 we have

P
(
|Q′

n| >
cνn

2

)
≤ C

E(Q′
n)2

ν2
n

≤ Cν−2
n

2n∑
j=k(p+q)−n+1

(σ−1
n |tnj |)2+δb−δ

n

≤ C
γ2nw

δ/2
n

ν2
nbδ

n

≤ Cp−δ/2(log n)(δ−2)/2.(5.16)

Therefore, (5.15) and (5.16) yield (3.7).
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As to (3.8), choosing τn = γ
1/3
3n = n1/3(

∑
|j|>n |ψj |)2/3. In view of Lemma 3.1

we have
P (|S2n| > τn) ≤ E(S2n)2/τ2

n ≤ Cγ
1/3
3n .

¤
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