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ABSTRACT

In the multiple linear regression model a class of weighted least absolute error
estimators, which minimize the sum of weighted absolute residuals, is proposed. It is
shown that the weighted least absolute error estimators with Wilcoxon scores are
equivalent to the Koul's Wilcoxon type estimator. Therefore, the asymptotic efficiency
of the proposed estimator with Wilcoxon scores relative to the least squares estimator
is the same as the Pitman efficiency of the Wilcoxon test relative to the Student's
#-test. To find the estimates the iterative weighted least squares method suggested by

Schlossmacher is applicable.
1. Introduction

Consider the linear regression model
P -
K: leijﬁj_{‘Ei; 1= 1, see, 1
i=

where the x;;’s are known constants, the §,’s are regression parameters to be

estimated, and the E's are identically and independently distributed (iid)

random errors.

Classically, the regression parameters are estimated by minimizing the sum
of squared deviations. That is, the least squares estimator is a solution to the

minimization problem
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or equivalently, is a solution of the system of equations

> (Yim 3 xifi)s=0, j=1,,5

i=1 -1
The least squares estimators enjoy some optimality properties, if the errors
are iid normal. But, it is well known that the least squares estimators are
very poor when the errors have a long-tailed distribution.

Various mathods have been proposed for obtaining robust estimators of the
regression parameters which are insensitive to the departures from normality
and to the effects of outliers in the data.

A class of M-estimators in location problems was introduced by Huber (19-
64). In the linear regression case (e.g. Huber (1973)), the class of M-estim-

ators is defined by the solutions to the minimization problem

n ?
2 p(Yi— Y x;8;) =min! (1.2)
i=1 i=1
where p is some convex function. Note that (1. 1) is a special case of (1, 2).

If we differentiate (1,2) with respect to f§;’s, we obtain the system of

equations

élcﬁ(yi—élxﬁﬁj)xﬁ:o, J=1 b
where ¢(x)=(d/dx)p(x) is assumed to be continuous and bounded.

A second class of L-estimators of regression parameters based on linear
combination of ordered statistics was investigated by Bickel (1973), A third
class of R-estimators based on rank tests, in location problems, was proposed
by Hodges and Lehmann (1963). The class of R-estimators was generalized
to regression problems by Adichie (1967), Sen (1968), Jaeckel (1972), Jure-
¢kova (1971), Koul (1969), Scholz (1978), and Sievers (1978), among
others.

Jaeckel (1972) proposed a method which minimizes

2 (R (Yim 3, ), (1.3)
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where R; is the rank of Y;—Xx;8; among {Y;— X x:;8;,1<i <n} and g.(1)
<+++<{ an(n) are some nondecreasing scores satisfying Y 4,(/)=0. Note that
the intercept f§; of the linear regression model can not be obtained by the
Jaeckel’s method. If we differentiate (1.3), the Jaeckel’s method can be

approximated by the method of Jureckovid (1971) which minimizes

?
gl . (1.4)

Jaeckel (1972) showed that the two minimization problems given by (1. 3)

Zl an(R:)xi;

i=

and (1.4) are asymptotically equivalent.

The least absolute error (LAE) estimator is a maximum likelihood estim-
ator when the errors have a double exponential distribution. The asymptotic
theory of the LAE estimators was established by Basset and Koenker (1978).
According to their results (Basset and Koenker, p.618), for any error distri-
bution for which the median is superior to the sample mean as an estimator
of location, the LAE estimator is preferable to the least squares estimator, in
the sense of having strictly smaller asymptotic confidence ellipsoids.

n

In this paper we propose an wefghted LAE estimator which minimizes
»
_Zlan(Ri) Yi—zlxijﬁj , (1.5)
1= =

where R; is the rank of |Y;— X x;;8;| among {|Y;— > x:;8;], 1< i< n}. Note
that when a,(R;))=1, i=1,- n, (1.5) reduces to the LAE problem.

Schlossmacher (1973) suggested a procedure to compute the LAE estimates
which uses the iterative weighted least squares method. His algorithm may
also be applied to the minimization problem (l,5) to obtain the weighted
LAE estimates.

In Section 2 we introduce a class of dispersion measures and discuss some
of their properties. The definition of our estimators is given and the invar-
iance properties are studied. In Section 3 we show the asymptotic equivalence
of the weighted LAE estimator with Wilcoxon scores to the Wilcoxon type
estimator proposed by Koul (1969). But, it seems easier to compute our

estimates than Koul’s estimates. From the asymptotic equivalence, it follows



26 2 oI
that the asymptotic relative efficiency of the weighted LAE estimator with
Wilcoxon scores relative to the least squares estimator is the same as that of

the Wilcoxon test relative to the Student’s -test.
2. Notations and Preliminaries

Let Y-+, Y, be independent random variables with continuous cumulative

distribution function (cdf)

P(Yi< ) =F(y—xf), i=1,-n,
where the B, =(8y1,**+, Bos) is the vector of regression parameters to be estim-
ated and the x;=(xi;,++, xip) are the vectors of known constants which form
the ith row of the nXxp matrix

Xo=((x:;7)), =1, p5 i=1,+o,n (2. 1)
In the sequel we shall suppress the index n whenever feasible.

For fixed Y-+, Y, and for any f3, let R; be the rank of |Y;—x3| among
(1 Yi—x81, 1<i<n}. Let a,(i), i=1,---,n, be a set of positive scores genera-
ted by

a (D) =0/ (n+1)), i=1,--n (2.2)
where ¢(u), 0<u<{l, is the score generating function which is nondecreasing

and square integrable on (0, 1). Define
T(Y—XB) =X an(Ri) | Yi—xif]- (2.3)

We now derive sorne properties of T(Y—XB) in the following theorems.
Theorem 2.1, For any fixed Y, T(Y—XB3) is a continuous and convex
function of fS.
(Proof) Tet p=(p1,ps ", pn) be any permutation of the indices 1,2, .-+, n.
Let P be the set of all such permutations. According to the same argument
as in Theorem 1 of Jaeckel (1972), for any fixed residuals Y,—x8 =1,

R /]

>

Tp:él an(pi) E Yi-XifS[
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is maximized over P when p;=R; i=1, ..., n. Thus, we have

T(Y-X8) =% 3 an($) | Yimxfl. (2.4)

Note that each term in the summation of (2.4) is a continuous and convex
function in 8. Therefore T(Y—XB), which is the maximum of a finite
number of such functions, is also continuous and convex (concave upward).
This completes the proof.

For the case of a single parameter, we have
T(Y—XB)=5 an(R)|Yi— (2.5)

where 5 and each x; are real numbers. From the convexity of T we may
state the following lemma without proof.

Lemma 2, 1. When p=1,

; Z‘g,: _é1 an(Ri)x; sgn(Y;— Bx:)

1s a nondecreasing step function in 8. Furthermore, the minimum of 47T/d8
is — Y a,(R;) x| and the maximum is Y a,(R)) x|
Thus, for the case of a single parameter, we can see that the graph of
T(Y—X5) will be an open convex polygon in the (T,8) plane. At each
vertex the slope of T is increased by the amount of one of the following:
1) When the order of absolute residuals changes in one sign,
(an(k+1) —an(E)) | xichany | — x| |-
ii) When the order of absolute residuals changes in different signs,
(an(k+1) —an(k)) | [xichan |+ [xiny [
ii1) When the sign of Y&, —8x;4 changes,
2lan(Dxias |
Here i(k) is the index of observation corresponding to the kth ordered residual.
Now for the general case, we are ready to prove the boundedness of the
set of 8 for which T(Y—-XB)<(T, for any T, Using the notations in Jaeckel
(1972), let E be the nxn matrix all of whose entries are 1/n, and let X=

EX. Combining Theorem 2.1 and Lemma 2.1, we may state the following
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theorem whose proof is exactly the same as that of Theorem 2 of Jaeckel
(1972).

Theorem 2.2. If X—X has rank p, then for any T, the set {8: T(Y—
XB)<T,} is bounded.

By Theorem 2.2, If X—X has rank p, then the set of 8 for which T(Y
—X@) attains its minimum is bounded. Since T(Y —XB) is actually a me-
asure of dispersions of residuals, it is possible to estimate the vector of regre-
ssion parameter 8, by minimizing T(Y—XpB).

Definition. The weighted LAE estimator 8y is a solution to the minimiz-
ation problem

T(Y— XB)= izflan(R,.) | Yi—x8] =min!. (2.6)

Note that the solutions to (2.6) may not be unique. However, according
to Theorem 3,2 below, they are asymptotically equivalent in the sense that
they all have the same asymptotic distribution.

We now state some invariance properties of the weighted LAE estimator ;.

Theorem2, 3. If §(Y,X) is a weighted LAE estimate defined by (2.6),
then

i) Br(Y+XB,X)=0:(Y,X)+pB, for any p-vector &,

ii) Br(AY, X)=48:(Y, X) for any real A

{Proof) i) Note that

3, an(R) | (Vi 58) =B+ |

= $a.(R) | Yimxl.
Thus, if 8r minimizes Y a.(R))|Yi—xf8|, then fr+8, minimizes Y a,(R)]
(K+xi181)_Xjﬁ|.
i1) From the equality
30 (R) [AYi—x:(26) | =2 T an(RD) | Yemxf,

the second part is also obvious.

(2.6) defines a class of weighted LAE estimators, one corresponding to
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each score generating function ¢ in (2.2). When a,(i) are Wilcoxon scores,
that is when ¢(u)=u, 0<u<l, the asymptotic equivalence between the weig-
hted LAE estimator and the Koul’s Wilcoxon type estimator is shown in the

next section.

3. Asymptotic Equivalence to Koul’s Estimator and Asymptotic

Properties

To show the asymptotic equivalence of the weighted LAE estimators
defined by (2.6) to the Koul’s estimator, we shall briefly make assumptions
in Koul (1969) and introduce the Koul’s estimator.

We assume that the cdf F is absolutely continuous and has finite Fisher’s

information, that is

[/ f @1 (dx < oo
with f being the density of the distribution. We also assume that f is abso-
lutely continuous, symmetric and bounded. Let
zn:%x,/xn (3. 1)
where X, is defined by (2.1), For the design matrix we assume that
lim (max x,-,-z)/("z xij1/2>:0
nww 1Ji<n i=1

for all j=1,...,p, and also assume that

lim3n=2. (3.2)
exists and is a positive definite matrix.
Define
N .
SnJ(Y):7 %,lxijan(Ri) Sgn(K): .]:1)"'7 p (3 3)

where R; is the rank of |Y;| among {|Y:], 1<i<n}. Let
S/ (Y)=(8u(Y), 8 (Y)),
Mu(Y) =08/ (Y) LuSH(Y)

where 2,, is defined by



Y= (f:r,oz(u)du)zn. (3. 4)
Then by Lemma 1.1 of Koul (1969), M,(Y—XB) has a chi-square distribu-
tion with p degrees of freedom. Thus a confidence region with confidence
coefficient 1—q may be defined by

R.(Y—-XB)={B: M.(Y—XB)<&a}. (3.5)
The Koul’s estimator 3 of the regression parameters is defined by the center

of gravity of the confidence region (3.5), that is

B=TARAY=XBN1" [ gy _ yptA@) (3.6)

where A denotes p-dimensional Lebesque measure on p-dimensional Euclidean
space. When ¢(u)=u, the asymptotic normality of the B in (3.6) is proved
by approximating 8 by § defined below. Therefore, in this section we shall
assume that ¢(u)=u, 0<u<l. Note that when ¢(u)=u, the scores a,(:) in
(2.2) are Wilcoxon scores.

However, as Koul mentioned (1969, p. 1953), it is believed that asymptotic
results will remain valid for a class of score generating function ¢ which is
monotone, square integrable and have first two integrable derivatives.

We introduce some further notations. Define
$ni(¥) =1 3 5 (2F(| Yil =D} sen(Y)
for j=1,--, p, and let
S (V)= (8 (Y), or, 8up (V).
Then by Equation (3.45) of Koul, for every >0
lim PL /]S, (Y) —Su(Y) | >e]=0 (3.7

for j=1, ..., p, where §,;(Y) is defined by (3. 3).

We now define §, which is asymptotically equivalent to ﬁ, by

B=(67)7 £.8(Y) (3.8)
where ﬁn is defined by (3.4) and
7':ff2(x)dx (3.9)

Notice that 3 ,=(1/3)Y, when ¢(x)=u, which will be used later.
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Definition. Two sequences of random vectors {3,} and {B8.} are said to be
asymptotically equivalent if

lim P[ Y| Ba—Bn =] =0

newo

holds for every ¢>0, where ||-| is defined for a p-vector ¢ by
rr P
=21t
i=1

By Lemma 4.1 and Theorem 4.1 of Koul (1969), we have the following
lemma.

Lemma 3.1. Under the assumptions of Koul (1969), {8} in (3.6) and {B}
in (3.8) are asymptotically equivalent. It follows that 4 7 (8—p,) is asym-
ptotically normal

(0, (67) 72X
where 3°-1=lim 37,7! and 7 is defined by (3.9).
Asymptotic normality of the weighted LAE estimator 8y will be proved by
showing the asymptotic equivalence of 87 to §. For any >0, define
V(@)= {B: i |BI< a).
By Corollary 3.1 of Koul (1969) we have the following lemma which com-
bining with (3.7), represents the asymptotic linearity of S,;(Y—Xj) in 8.
Lemma 3.2, Under the assumptions of Koul (1969), for every >0

lim 2/ g 5P VA 1S0(Y = X8) —80u(¥) + 20,8 ¢ | =0

for all i=1,...,p and any 0<la<{co, where ¢; is the jth row of 3}, in(3.1).
Let

D(Y-XP)=—=T(Y~XB) =) 5 a(R) | ¥Yi=xf].

1

Then the partial derivatives of D(Y—X3) are

aD(gﬂtXﬁ) _ ¢IZ iZZ:IXijﬂn(Ri) sgn(Y:—x8), (3. 10)

for j=1,..-, p. To show the asymptotic equivalence we will firstly approxi-
mate D(Y —X@) by a quadratic form, and then we will show that the points

where they are minimized approach each other,
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We now define the quadraitc function

Q(B)= Vn (1B T8-S5/ (Y)B) +D(Y). (.11
The partial derivatives of Q(B) are

29D — i (20,8=8,(Y)), j=1, 7

and Q(f) is minimized at the unique solution of the system
2r Ta8=8.(Y).
Note that this solution is the same as the § defined by (3.8).
The following Lemma 3.3 and Theorem 3.1 are similar to Lemma 1 and
Theorem 3 of Jaeckel (1972), respectively.
Lemma 3.3. Under the assumptions of Koul (1969),

lim P 5 P 1Q(8) —D(Y ~X8) | ¢ |=0

holds for every >0 and 0<le<co.
{Proof)> By (3.10), (3.11) and Lemma 3.2, it can be easily shown that

. I su aQ(ﬁ) _ BD(Y—Xﬁ) a =
lim P‘Lﬂer(a) ¢ S }2¢7 a]_o (3.12)

holds for every >0 and a>0. Given >0 and’a>0, we choose 8,=1V.(a).

Then for 0<t<1,

A 1Q8) ~D(Y —1X8,)]

=3, 8] 55 Q) — 55 D(Y—1x8) ] (3.13)
Combining (3. 12) and (3. 13), we have for 0<{7<1
lim P | 5(Q(B) —D(Y —1XB))| = ¢|=0 (3. 14)

for every B,&V.(a).
Since @ —D is continuous on V,(e¢) which is closed, it takes the maximum

on V,(a). Note also that Q=D at t=0. Therefore by (3. 14) with =1, we

have

lim P g T5% 1 1Q(8)—D(Y—Xp) | 2¢|=0,

n-wo

completing the proof.
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Let
By={B: T(Y—Xp) is minimized}. (3. 15)
Then the weighted LAE estimators §r are points of By, and they are asym-
ptotically equivalent by the following theorem.
Theorem 3.1, Under the assumptions of Koul (1969),

lim P g " /gl e | =
holds for every &>0.
(Proof) Because of Theorem 2.3 we may assume that 8,=0 without any

loss of generality. To prove the theorem it is enough to show that for all
£>0 and ¢>>0,
Ao, V7 168 z¢]<0
for sufficiently large n.
Choose ¢>0 and ¢>0, and let
r=min{Q(B) : v ||8—5 =¢—Q(). (3.16)
Then, since Q(B) has a unique minimum at 3, r>0. therefore by Lemma

3.3, there exists n(d;) such that
max 0 -
P g 5% 1@ —D(Y -~ XB) = [ |< 0. (3.17)

for all n>n(0,).

However, by Lemma 3.1, 23 has a limiting normal distribution. It
follows that for a given ¢ > 0 there exist a, and n(d;) such that n>>n(d,)
implies

P[«/ﬂﬂ}gao]zl—%. (3.18)
By (3.17) and (3. 18), we have for all n>>n(d)=max{n(d,),n(d,)},

P[¢n_§f51;ga0 and D(Y- X3)<Q(8) | - }1*5 (3.19)
Also, for any § such that 4/ n '8—j =¢ and n>n(3),

H Y78/ < apte and D(Y —X5)>Q(8)—— =1-0.  (3.20)

But, by the definition of r in (3. 16), for every 8 such that /n B—f|=
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we have
QA =Q(E) +r. (3.21)
Combining (3.19), (3.20) and (3.21), we have that n>>n(d) implies
P[D(Y—-XB)>D(Y—X3)]>1-0 (3.22)

for every f3 such that J?}ﬂwﬁ\ —¢. However, by the convexity of D, the
strict  inequality in (3.22) holds for all § such that 4=z B8 >e
Therefore, BBy implies 4/ n '8—8 < e with probability at least 1—4 for

all n > n(d). Thus we have for every n > n(d},

Pl gD V| =Bl <e =18
This concludes the proof.
By Lemma 3.1 and Thecrem 3.1, we have the following main theorent of
this section.
Theorem 3.2, Under the assumptions of Kouvl (1869}, the weighted LAE
estimators By &£y are asymptotically equivalent. Moreover, W 2 (Br—p,) has
asymptotically multivariate normal distribution with mean zero and covaria-

nce matrix

o]

where Y zlim(%Xn’Xn)
nees \

<Proef) If we notice that 2,,:(1/3)2,1 when ¢(u)=wu, the thecrem
follows immediately from Lemma 3.1 and Thkeorem 3. 1.

It is well known that the asymptotic distribution of the least squares esti-
mator «/ n 8* is multivariate normal with mean 4/ 2§, and covarianc> ma-
trix 02> 71, where ¢? is the common variance of Y;s. Therefore, if we de-
fine the asymptotic relative efficiency of By relative to §* as the inverss
ratio of their generalized limiting variances, and denote it by ¢(87,5*), then

we have
(B, B =120 [~ fr)en ] (3.23)

Note that this is nothing but the Pitman efficiency of the Wilcoxon test
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relative to the Student’s t-test. Thus, when F(x) is normal, the asymptotic
efficiency is 7/3=0.955. When F(x) is double exponential, the Pitman eff-
iciency of the Wilcoxon test to t-test is 1.5, If F(x) has longer tails (such
as Cauchy), then the asymptotic efficiency in (3. 23) may be infinitely large,

and for any continuous F(x) with finite variance it cannot be less than 0. 864.

COMMENTS

As mentioned in Section 1 the Schlossmacher’s algorithm, which uses the
iterative weighted least squares method, may be used for the minimizaticn
problem (2.6). But, since the weights are changing in each iteration accord-
ing to the order of residuals, it is possible that the convergence fails very
often. We note also that the second deritives of the dispersion measure fun-
ction T in (2.6) are identically zero wherever they exist. Therefore we
cannot use any algorithm swhich is based on second derivatives, like Newton's
method. One possibility is the use of steepest descent method, which is unfo-
rtunately very slow in convergence and oscillates very often around the
minimum point. Thus, developing more efficient algorithms for the minimi-
zation proolem (2.6) is subject to further study. Because of its nice asym-
ptotic properties, a comparative study for small samples is also worthy to be

done.
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