• Title/Summary/Keyword: regression estimators

Search Result 227, Processing Time 0.02 seconds

An improvement of estimators for the multinormal mean vector with the known norm

  • Kim, Jaehyun;Baek, Hoh Yoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.435-442
    • /
    • 2017
  • Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}$ (p ${\geq}$ 3) under the quadratic loss from multi-variate normal population. We find a James-Stein type estimator which shrinks towards the projection vectors when the underlying distribution is that of a variance mixture of normals. In this case, the norm ${\parallel}{\theta}-K{\theta}{\parallel}$ is known where K is a projection vector with rank(K) = q. The class of this type estimator is quite general to include the class of the estimators proposed by Merchand and Giri (1993). We can derive the class and obtain the optimal type estimator. Also, this research can be applied to the simple and multiple regression model in the case of rank(K) ${\geq}2$.

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

EFFICIENT ESTIMATION OF POPULATION MEAN IN STRATIFIED SAMPLING USING REGRESSION TYPE ESTIMATOR

  • Grover Lovleen Kumar
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.441-452
    • /
    • 2006
  • Here an efficient regression type estimator for a stratified population mean is proposed under the two-phase sampling scheme. While constructing the proposed estimator, it is assumed that the first auxiliary variable x is directly and highly correlated with the study variable y, and the second auxiliary variable z is directly and highly correlated with the first auxiliary variable x. However the variable z is not directly correlated with the variable y, but they are just correlated with each other only due to their direct and high correlation with the variable x. The proposed regression type estimator is found to be always more efficient than the existing estimators defined under the same situation.

Dual Generalized Maximum Entropy Estimation for Panel Data Regression Models

  • Lee, Jaejun;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.395-409
    • /
    • 2014
  • Data limited, partial, or incomplete are known as an ill-posed problem. If the data with ill-posed problems are analyzed by traditional statistical methods, the results obviously are not reliable and lead to erroneous interpretations. To overcome these problems, we propose a dual generalized maximum entropy (dual GME) estimator for panel data regression models based on an unconstrained dual Lagrange multiplier method. Monte Carlo simulations for panel data regression models with exogeneity, endogeneity, or/and collinearity show that the dual GME estimator outperforms several other estimators such as using least squares and instruments even in small samples. We believe that our dual GME procedure developed for the panel data regression framework will be useful to analyze ill-posed and endogenous data sets.

Regression Model-Based Fault Detection of an Air-Handling Unit (회귀기준식 이용 공조기 부위별 고장검출)

  • 이원용;이봉도
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.688-696
    • /
    • 2000
  • A scheme for fault detection on the subsystem level is presented. The method uses analytical redundancy and consists in generating residuals by comparing each measurement with an estimate computed from the reference models. In this study regression neural network models are used as reference models. The regression neural network is memory-based feed forward network that provides estimates of continuous variables. The simulation result demonstrated that the proposed method can effectively detect faults in an air handling unit(AHU). The results show that the regression models are accurate and reliable estimators of the highly nonlinear and complex AHU.

  • PDF

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.

On Rice Estimator in Simple Regression Models with Outliers (이상치가 존재하는 단순회귀모형에서 Rice 추정량에 관해서)

  • Park, Chun Gun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.511-520
    • /
    • 2013
  • Detection outliers and robust estimators are crucial in regression models with outliers. In such studies the focus is on detecting outliers and estimating the coefficients using leave-one-out. Our study introduces Rice estimator which is an error variance estimator without estimating the coefficients. In particular, we study a comparison of the statistical properties for Rice estimator with and without outliers in simple regression models.

M-quantile kernel regression for small area estimation (소지역 추정을 위한 M-분위수 커널회귀)

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.749-756
    • /
    • 2012
  • An approach widely used for small area estimation is based on linear mixed models. However, when the functional form of the relationship between the response and the input variables is not linear, it may lead to biased estimators of the small area parameters. In this paper we propose M-quantile kernel regression for small area mean estimation allowing nonlinearities in the relationship between the response and the input variables. Numerical studies are presented that show the sample properties of the proposed estimation method.

Deletion diagnostics in fitting a given regression model to a new observation

  • Kim, Myung Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.231-239
    • /
    • 2016
  • A graphical diagnostic method based on multiple case deletions in a regression context is introduced by using the sampling distribution of the difference between two least squares estimators with and without multiple cases. Principal components analysis plays a key role in deriving this diagnostic method. Multiple case deletions of test statistic are also considered when a new observation is fitted to a given regression model. The result is useful for detecting influential observations in econometric data analysis, for example in checking whether the consumption pattern at a later time is the same as the one found before or not, as well as for investigating the influence of cases in the usual regression model. An illustrative example is given.

Design-Based Properties of Least Square Estimators of Panel Regression Coefficients Based on Complex Panel Data (복합패널 데이터에 기초한 최소제곱 패널회귀추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.515-525
    • /
    • 2010
  • We investigated design-based properties of the ordinary least square estimator(OLSE) and the weighted least square estimator(WLSE) in a panel regression model. Given a complex data we derive the magnitude of the design-based bias of two estimators and show that the bias of WLSE is smaller than that of OLSE. We also conducted a simulation study using Korean welfare panel data in order to compare design-based properties of two estimators numerically. In the study we found the followings. First, the relative bias of OLSE is nearly two times larger than that of WLSE and the bias ratio of OLSE is greater than that of WLSE. Also the relative bias of OLSE remains steady but that of WLSE becomes smaller as the sample size increases. Next, both the variance and mean square error(MSE) of two estimators decrease when the sample size increases. Also there is a tendency that the proportion of squared bias in MSE of OLSE increases as the sample size increase, but that of WLSE decreases. Finally, the variance of OLSE is smaller than that of WLSE in almost all cases and the MSE of OLSE is smaller in many cases. However, the number of cases of larger MSE of OLSE increases when the sample size increases.