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Abstract
A graphical diagnostic method based on multiple case deletions in a regression context is introduced by using

the sampling distribution of the difference between two least squares estimators with and without multiple cases.
Principal components analysis plays a key role in deriving this diagnostic method. Multiple case deletions of test
statistic are also considered when a new observation is fitted to a given regression model. The result is useful for
detecting influential observations in econometric data analysis, for example in checking whether the consumption
pattern at a later time is the same as the one found before or not, as well as for investigating the influence of cases
in the usual regression model. An illustrative example is given.

Keywords: case deletions, covariance matrix, influence, principal components analysis, test
statistic

1. Introduction

Regression analysis has been used widely in econometric field. We often have a question, “Is an
economic relationship at a later time the same as the one found before?”. When we use a linear re-
gression to represent an economic relationship, a statistical expression of this question is to say “Does
an observation at a later time follow the regression model estimated by the data obtained before?”.
This question can be answered statistically in a regression context by taking two steps. The first step
is to establish a regression model among economic factors of interest and the second step is to check
whether an observation at hand follows this established regression model, by using an appropriate test
of hypotheses given in for example Chow (1960) or Ghilagaber (2004). Specific examples are, “Is
the consumption pattern at a later time the same as the one found before?”, “Is the dependency of the
price of a commodity at present on some economic factors the same as the one found before?”, and
so on.

In a regression context, it is well known that one observation or a few observations can substan-
tially influence the least squares estimators and their relevant quantities (Chatterjee and Hadi, 1988;
Cook and Weisberg, 1982). Hence in an analysis of regression data, it is very important to detect such
observations and to assess their influence on diverse regression quantities. In our problem, there may
exist some influential observations in each of two steps mentioned above. Even a single influential
observation in either step can lead us to a wrong analysis result. The first step of our analysis is just
the usual regression analysis for which a diagnostic method based on multiple case deletions is in-
troduced in Section 3 by using the sampling distribution of the difference between two least squares
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estimators with and without multiple cases. Principal components analysis plays a key role in deriving
this diagnostic method. As in the usual regression analysis, some observations can have a large influ-
ence in testing whether an observation at hand comes from a given regression model. Hence a suitable
method of detecting influential observations is needed for the second step. To this end multiple case
deletions of test statistic are derived in Section 4. In Section 5, a numerical example is provided for
illustration.

2. Preliminaries

We consider the multiple linear regression model defined by

y = Xβ + ε, (2.1)

where y = (y1, . . . , yn)T is a column vector of response variables of size n, X = (x1, . . . xn)T is an n× p
full column rank matrix of n measurements on p fixed regressors, β is a column vector of p unknown
regression coefficients of size p, and ε = (ε1, . . . , εn)T is a column vector of unobservable random
errors of size n. The errors ε1, . . . , εn are assumed to be independent and identically distributed as a
normal distribution N(0, σ2) with zero mean and variance σ2.

We denote the least squares estimator of β by β̂ = (XT X)−1XT y. The residual vector is given by
e = (e1, . . . , en)n = y − Xβ̂ = (In − H)y, where H = (hi j) = X(XT X)−1XT is the projection matrix and
In is the identity matrix of order n. We have an alternative expression ei = yi − xT

i β̂. The residual sum
of squares is written as s2 = (y−Xβ̂)T (y−Xβ̂) = eT e. An unbiased estimator of σ2 is σ̂2 = s2/(n− p).
The covariance matrix of β̂ becomes cov(β̂) = σ2(XT X)−1. More details can be found in Seber (1977).

3. Influence in estimating regression coefficients

Let J be an index set of k indices among 1, . . . , n. We denote by yJ the column vector formed by the
elements of y corresponding to J and let XJ consist of the rows of X indexed by J. When we write as
y(J) the vector y from which yJ are removed and as X(J) the matrix X from which the rows of XJ are
removed, we have

XT X = XT
(J)X(J) + XT

J XJ

so that (
XT

(J)X(J)

)−1
=

(
XT X

)−1
+

(
XT X

)−1
XT

J (Ik − HJ)−1 XJ

(
XT X

)−1
, (3.1)

where HJ = XJ(XT X)−1XT
J . We write as β̂(J) the least squares estimator of β for the regression (2.1)

computed without the cases indexed by J. Since (Ik − HJ)−1 = Ik + (Ik − HJ)−1HJ and XT
(J)y(J) =

XT y − XT
J yJ , a little computation yields

β̂(J) =
(
XT

(J)X(J)

)−1
XT

(J)y(J)

= β̂ −
(
XT X

)−1
XT

J (Ik − HJ)−1 eJ ,

where eJ = yJ − XJ β̂. Thus we have

β̂ − β̂(J) =
(
XT X

)−1
XT

J (Ik − HJ)−1 eJ .
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The sampling distribution of β̂ − β̂(J) is seen to be determined wholly by that of eJ and we need to
find it for our purpose. Since e = (In −H)y, the expectation of the residual vector e is E(e) = 0 and its
covariance matrix is cov(e) = σ2(In − H). We let Q be a subsidiary matrix of size k × n that extracts
the elements indexed by J from the residual vector e. Since the rows of Q are linearly independent,
the rank of Q is just k. We have eJ = Qe which enables us to easily compute the covariance matrix of
eJ as

cov(eJ) = Q cov(e)QT = σ2(Ik − HJ).

The expectation of β̂ − β̂(J) is zero and its covariance matrix is computed as

cov
(
β̂ − β̂(J)

)
= σ2

(
XT X

)−1
XT

J (Ik − HJ)−1 XJ

(
XT X

)−1
.

Since the rank of CACT is equal to that of C for a positive definite matrix A and a matrix C of an
appropriate size, the rank of cov(β̂ − β̂(J)) is given by that of (XT X)−1XT

J . Since XT X is nonsingular,
the rank of (XT X)−1XT

J is equivalent to that of XJ which is min{k, p}. Hence the probability distribution
of cov(β̂ − β̂(J)) resides wholly in a min{k, p}-dimensional subspace of the p-dimensional Euclidean
space.

The influence of deleting the observations corresponding to the index set J on the least squares
estimator β̂ can be measured by the remoteness of β̂(J) from β̂. It is reflected in the covariance matrix
cov(β̂ − β̂(J)), not in the mean E(β̂ − β̂(J)) because the mean is always zero irrespective of deletions.
Thus an influence analysis of deleting observations can be performed using the covariance matrix
cov(β̂ − β̂(J)) to which the principal components analysis is applied in order to remove components
along redundant axes if any, which will be described in what follows. Since the rank of cov(β̂ −
β̂(J)) is min{k, p} (= m, say for convenience), it has m positive eigenvalues r1, . . . , rm, and the first m
standardized eigenvectors g1, . . . , gm associated with these eigenvalues describe the whole structure
of the covariance matrix. The first m principal components of β̂ − β̂(J) are the associated coordinates
with respect to the first m eigenvectors g1, . . . , gm, whose variances are the eigenvalues r1, . . . , rm,
respectively. The absolute values of the principal components of β̂ − β̂(J) will become large as β̂(J)
stays away from β̂, and so will their variances. Whenever k < p, there are p − k redundant axes for
describing the probability distribution of cov(β̂−β̂(J)), and projections of β̂−β̂(J) along these redundant
axes make no contribution to the influence of observations in J on β̂.

Since σ2 appears commonly to all the case deletions, we can drop it for performing our prin-
cipal components analysis based on cov(β̂ − β̂(J)). Let r̂1, . . . , r̂m be the m positive eigenvalues of
(XT X)−1XT

J (Ik − HJ)−1XJ(XT X)−1 and ĝ1, . . . , ĝm be the associated standardized eigenvectors, respec-
tively. We define

R(J) =

m∑
i=1

r̂i,

V(J) =

m∑
i=1

{
ĝT

i

(
β̂ − β̂(J)

)}2
.

Since R(J) or V(J) or both will become large as β̂(J) gets far from β̂, a reasonable measure of the
remoteness of β̂(J) from β̂ is to consider both R(J) and V(J). A graphical display of the pairs (R(J),V(J))
in the plane can be useful for identifying subsets of influential observations for each k = 1, 2, . . . , in
which subsets of observations located away from the origin are potentially influential.
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4. Influence in testing

4.1. Test statistic

We will review a procedure of checking whether an additional observation follows the regression
model (2.1) and more details can be found in Chow (1960). Let yn+1 be an observation on the response
variable associated with the column vector xn+1 of particular measurements on p regressors. In order
to check whether a particular single case (yn+1, xn+1) comes from the regression (2.1), we will adopt the
procedure described in what follows. First we assume that the case (yn+1, xn+1) follows the regression
model

yn+1 = xT
n+1β∗ + εn+1,

where β∗ is a column vector of p unknown regression coefficients and εn+1 is an unobservable ran-
dom error distributed as N(0, σ2), independent of ε in the regression (2.1). Then a hypothesis that a
particular single case (yn+1, xn+1) comes from the given regression (2.1) is equivalent to the following
hypothesis

H0 : β = β∗.

A test of this hypothesis can be performed using the difference between yn+1 and the predicted value
at xn+1 from the regression (2.1), and this difference can be written as

D = yn+1 − xT
n+1β̂

= xT
n+1 (β∗ − β) + ϵn+1 − xT

n+1

(
XT X

)−1
XTε.

Hence we can easily see that the sampling distribution of the difference D is a normal whose mean
and variance are given by

E(D) = xT
n+1 (β∗ − β) ,

var(D) =
[
1 + xT

n+1

(
XT X

)−1
xn+1

]
σ2,

respectively. Under the null hypothesis H0, the sampling distribution of the ratio

T =
n − p

1 + xT
n+1

(
XT X

)−1 xn+1

(
yn+1 − xT

n+1β̂
)2

s2 (4.1)

is an F-distribution with degrees of freedom 1 and n − p. If the value of the test statistic T is signifi-
cantly large, we would reject the null hypothesis H0.

4.2. Multiple case deletions

Using the identity in (3.1), we have

xT
n+1

(
XT

(J)X(J)

)−1
xn+1 = xT

n+1

(
XT X

)−1
xn+1 + xT

n+1

(
XT X

)−1
XT

J (Ik − HJ)−1 XJ

(
XT X

)−1
xn+1. (4.2)
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The residual sum of squares computed without the cases indexed by J is computed as

s2
(J) =

(
y(J) − X(J)β̂(J)

)T (
y(J) − X(J)β̂(J)

)
= yT

(J)y(J) − 2β̂T
(J)X

T
(J)y(J) + β̂

T
(J)X

T
(J)X(J)β̂(J)

= s2 − eT
J

[
Ik + (Ik − HJ)−1 HJ

]
eJ

= s2 − eT
J (Ik − HJ)−1 eJ . (4.3)

The difference between yn+1 and the predicted value at xn+1 computed without the cases indexed by I
is given by

D(J) = yn+1 − xT
n+1β̂(J)

= D + xT
n+1

(
XT X

)−1
XT

J (Ik − HJ)−1 eJ . (4.4)

From (4.2) and (4.3), we get[
1 + xT

n+1

(
XT

(J)X(J)

)−1
xn+1

]
s2

(J)

=

[
1 + xT

n+1

(
XT X

)−1
xn+1

]
s2 − eT

J (Ik − HJ)−1 eJ

+ xT
n+1

(
XT X

)−1
XT

J (Ik − HJ)−1 XJ

(
XT X

)−1
xn+1

[
s2 − eT

J (Ik − HJ)−1 eJ

]
. (4.5)

When the cases indexed by J are removed from the sample, the test statistic given in (4.1) is then
computed as

T(J) =
n − p − k

1 + xT
n+1

(
XT

(J)X(J)

)−1
xn+1

D2
(J)

s2
(J)

(4.6)

which can be evaluated using (4.4) and (4.5). The large absolute value of T − T(J) implies that the
group effect of the cases indexed by J on the test statistic T can be high.

5. A numerical example

Single, double and triple case deletions are performed for the body fat data set (Neter et al., 1996,
p.261) which have 20 measurements on a single dependent variable and three independent variables.
It is assumed that the intercept term is included in the regression model. For our analysis, we divide the
body fat data set into two groups: the first part consists of the first 19 observations and the second part
comprises the last observation only. The null hypothesis H0 is defined as one that the last observation
follows the regression estimated by the first 19 observations, and we will investigate the influence
of observation belonging to the first part in testing the null hypothesis H0. Based on the first 19
observations, the least squares estimate of β = (β0, β1, β2, β3)T is computed as

β0 = 113.72, β1 = 4.23, β2 = −2.77, β3 = −2.13.

The value of the test statistic T in (4.1) is computed as 0.061 and its associated p-value is 0.808. Hence
we can conclude at reasonable significance levels that the last observation follows the regression
formed by the first 19 observations.
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Figure 1: Graphical displays of the pairs (R(J),V(J)).

5.1. Single case deletions

For single case deletions, the corresponding graphical display of the pairs (R(J),V(J)) in the plane is
included in Figure 1(a). Case 1 is remarkably distinct from the other cases. Cases 2, 8, 10, 19, etc
are located far from the origin, lying on the outskirts of the figure. In order to confirm that the cases
identified by Figure 1(a) are really influential ones, numerical single case deletions are performed and
we investigated the absolute values of β̂i − β̂i(r) (r = 1, 2, . . . , 19) as follows.

1. For β̂0, case 1 is most influential and the next ones are in this order 19, 8, 2, 3, 14, 13, etc. For
each deletion of cases 1, 19, 8 and 2, β̂0 − β̂0(r) becomes −74.9, −47.2, 43.7 and 42.3, respectively.

2. For β̂1, case 1 is most influential and the next ones are in this order 19, 8, 2, 14, 13, 3, etc. For
each deletion of cases 1, 19, 8 and 2, β̂1 − β̂1(r) becomes −2.17, −1.38, 1.36 and 1.27, respectively.

3. For β̂2, case 1 is most influential and the next ones are in this order 19, 8, 2, 3, 14, 13, etc. For
each deletion of cases 1, 19, 8 and 2, β̂2 − β̂2(r) becomes 1.94, 1.21, −1.16 and −1.10, respectively.

4. For β̂3, case 1 is most influential and the next ones are in this order 19, 8, 3, 2, 14, 13, etc. For each
deletion of cases 1, 19, 3 and 8, β̂3 − β̂3(r) becomes 1.113, 0.733, −0.678 and −0.672, respectively.

From this confirmation, we can see that Figure 1(a) provides quite accurate information about the
influence of cases on β̂.

Single case deletions of test statistic given in (4.6) are included in Table 1. The column with
the heading T shows the value of the test statistic computed without the corresponding case and the
related p-value is in the column with the heading p. Table 1 shows that the removal of each of cases
19 and 1 increases the p-value compared with the others. On the other hand, the deletion of each
of cases 8 and 2 causes a great decrease in the p-value compared with the others, and that of case 9
decreases the p-value in the third place. For single case deletions these influential cases in testing H0
are also influential in estimating the regression coefficients.
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Table 1: Single case deletions of test statistic

No. T p No. T p No. T p
1 0.005 0.947 8 0.151 0.703 15 0.069 0.797
2 0.133 0.721 9 0.100 0.756 16 0.060 0.810
3 0.048 0.830 10 0.058 0.814 17 0.055 0.818
4 0.036 0.853 11 0.064 0.805 18 0.038 0.849
5 0.063 0.806 12 0.088 0.772 19 0.012 0.915
6 0.051 0.824 13 0.045 0.835
7 0.066 0.800 14 0.110 0.745

Table 2: (R(J),V(J)) for some double case deletions

Cases (1, 19) (1, 10) (1, 2) (1, 8)
(R(J),V(J)) (769.1, 28326.9) (950.3, 3643.0) (898.9, 1093.5 ) (762.4, 671.9)

Cases (1, 9) (1, 7) (2, 8) (5, 14)
(R(J),V(J)) (728.8, 2818.1 ) (630.8872, 11506.5) (454.0, 11176.8 ) (418.6, 9479.7)

Table 3: Double case deletions of test statistic

No. T p No. T p
(1, 4) 0.000 0.997 (2, 8) 0.343 0.568

(1, 19) 0.055 0.817 (4, 19) 0.002 0.970

5.2. Double case deletions

For double case deletions, Figure 1(b) includes the corresponding graphical display of the pairs
(R(J),V(J)) in the plane. Some double case deletions lying on the outskirts of Figure 1(b) that are
far from the origin are summarized in Table 2. Deletion of double cases (1, 19) is remarkably distinct
from the others. We perform numerical double case deletions to show the efficiency of Figure 1(b)
based on the absolute value of β̂i − β̂i(J) and they are summarized as follows.

1. For β̂0, deletions of double cases (1, 19), (1, 7), (2, 8) are highly influential in this order. For each
deletion of double cases (1, 19), (1, 7) and (2, 8), β̂0 − β̂0(J) becomes −168.2, −107.2 and 105.6,
respectively.

2. For β̂1, deletions of double cases (1, 19), (2, 8), (5, 14), (1, 7) are highly influential in this order.
For each deletion of double cases (1, 19), (2, 8), (5, 14) and (1, 7), β̂1 − β̂1(J) becomes −4.90, 3.23,
−3.14 and −3.10, respectively.

3. For β̂2, deletions of double cases (1, 19), (2, 8), (1, 7), (5, 14) are highly influential in this order.
For each deletion of double cases (1, 19), (2, 8), (1, 7) and (5, 14), β̂2 − β̂2(J) becomes 4.33, −2.77,
2.77 and 2.52, respectively.

4. For β̂3, deletions of double cases (1, 19), (5, 14), (2, 8), (1, 7), (1, 14) are highly influential in
this order. For each deletion of double cases (1, 19), (5, 14), (2, 8), (1, 7) and (1, 14), β̂3 − β̂3(J)
becomes 2.54, 1.75, −1.64, 1.59 and 1.53, respectively.

Some double case deletions which yield significant changes in the value of test statistic are in-
cluded in Table 3. The p-values over all double case deletions range from 0.568 to 0.997. Each
removal of double cases (1, 4) or (4, 19) does not allow us to reject the null hypothesis at any rea-
sonable significance levels, and that of double cases (2, 8) decreases the p-value. Though each single
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Table 4: (R(J),V(J)) for some triple case deletions

Cases (1, 7, 19) (1, 2, 10) (1, 2, 8) (1, 2,19)
(R(J),V(J)) (1026, 46005) (1631, 31.1) (1515, 2550 ) (1523, 23152)

Cases (1, 8, 10) (1, 2, 9) (1, 10, 19) (1, 9, 19)
(R(J),V(J)) (1448, 13.4) (1414, 52.4) (1416, 28876 ) (1248, 27560)

deletion of cases 1 and 19 greatly increases the p-value, the removal of double cases (1, 19) does
not cause a noticeable change in the p-value, that is the joint influence of cases 1 and 19 on the test
statistic is not severe.

5.3. Triple case deletions

For triple case deletions, a graphical display of the pairs (R(J),V(J)) in the plane, nor provided here,
shows that the deletion of triple cases (1, 7, 19) is separated from the main body of the remaining data.
Some observations residing in the outskirts of the main body are listed in Table 4.

1. For β̂0, the values of β̂0 − β̂0(J) over all triple case deletions range from −214.3 to 157.3. The first
three most influential subsets are as follows: β̂0 − β̂0(J) for each deletion of (1, 7, 19), (1, 18, 19)
and (1, 14, 19) becomes −214.3, −181.7 and −180.7, respectively.

2. For β̂1, the values of β̂1 − β̂1(J) over all triple case deletions range from −6.22 to 4.73. The first
three most influential subsets are as follows: β̂1 − β̂1(J) for each deletion of (1, 7, 19), (1, 14, 19)
and (1, 18, 19) becomes −6.22, −5.38 and −5.33, respectively.

3. For β̂2, the values of β̂2 − β̂2(J) over all triple case deletions range from −4.067 to 5.513. The first
three most influential subsets are as follows: β̂2 − β̂2(J) for each deletion of (1, 7, 19), (1, 18, 19)
and (1, 14, 19) becomes 5.513, 4.664 and 4.662, respectively.

4. For β̂3, the values of β̂3 − β̂3(J) over all triple case deletions range from −2.48 to 3.22. The first
three most influential subsets are as follows: β̂0 − β̂0(J) for each deletion of (1, 7, 19), (1, 14, 19)
and (1, 18, 19) becomes 3.22, 2.82 and 2.80, respectively.

Thus we can see that the deletion of triple cases (1, 7, 19) is most influential on all of the regression
coefficients.

The p-values over all triple case deletions range from 0.45983 to 0.99993. The deletion of triple
cases (1, 6, 18) increases the p-value from 0.808 to 0.99993 while the removal of triple cases (2, 8, 9)
decreases the p-value from 0.808 to 0.45983. The dramatic change from the acceptance of H0 to its
rejection can not occur due to any triple case deletion. The deletion of triple cases (1, 7, 19) decreases
the p-value from 0.808 to 0.797, but this change is negligible. Hence the deletion of triple cases (1, 7,
19) is influential in estimating all of the regression coefficients but not in testing H0.

6. Concluding remarks

We note that no assumption about a distributional form is in fact needed just for applying the di-
agnostic method introduced in Section 3. The diagnostic statistic β̂ − β̂(J) is a vector. It is usually
normalized so that subsets of observations can be ordered in a meaningful way (Chatterjee and Hadi,
1988). For example one popular normalized diagnostic statistic is the Cook’s distance (Cook, 1977).
However, the use of the Cook’s distance sometimes fails to identify influential observations correctly
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as Kim (2015) has shown, where some results relevant to a single case deletion can also be found.
Our diagnostic method does not need any normalization.

The diagnostic method introduced in Section 3 can be used for any statistical problems where the
covariance matrix of β̂ − β̂(J) is available theoretically or numerically.
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