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Abstract
Data limited, partial, or incomplete are known as an ill-posed problem. If the data with ill-posed problems

are analyzed by traditional statistical methods, the results obviously are not reliable and lead to erroneous inter-
pretations. To overcome these problems, we propose a dual generalized maximum entropy (dual GME) estimator
for panel data regression models based on an unconstrained dual Lagrange multiplier method. Monte Carlo sim-
ulations for panel data regression models with exogeneity, endogeneity, or/and collinearity show that the dual
GME estimator outperforms several other estimators such as using least squares and instruments even in small
samples. We believe that our dual GME procedure developed for the panel data regression framework will be
useful to analyze ill-posed and endogenous data sets.

Keywords: Collinearity, endogeneity, exogeneity, generalized maximum entropy, ill-posed prob-
lems, panel data.

1. Introduction

The amount of recorded data in the world has exploded. Managing and analyzing data(especially non-
experimental data) have always offered the greatest challenges for statisticians and econometricians.
One of the reasons is that data are limited, partial, or incomplete in most of the cases, which is called
an ill-posed problem (Golan et al., 1996a). For example, in regression models, ill-posed problems can
result from a variety of causes, including non-stationarity, model misspecification, and collinearity. If
the data with ill-posed problems are analyzed by traditional estimation and inference procedures, the
results obviously are not reliable and lead to erroneous interpretations. Even it is highly unlikely to
find feasible solutions.

Shannon (1948) initially applied the entropy concept, which is the quantitative measure of disorder
in physics, to the theory of communication and transmission of information. Since then, Jaynes
(1957a, b) developed the maximum entropy methodology that can be applied to predicting probability
distribution in situations, where he only knew what the possible outcome values are and that the sum
of corresponding probabilities is unity. Golan et al. (1994), Golan and Judge (1996), and Golan et
al. (1996b, 1997) coped with the ill-posed and underdetermined problems in economics.

For the classical maximum entropy formalism, Golan et al. (1996a) considered a finite and discrete
linear model

y = Xβ = X p, (1.1)
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where y is a T -dimensional vector and the linear operator X is a T × K(K > T ) non-invertible matrix.
Here the unknown and unobservable frequencies p = (p1, . . . , pK)′ satisfy the conditions

∑K
k=1 pk =

1 and pk ≥ 0. Given this specification, determining the unknown probabilities p is often difficult
because the number of data points are less than the number of unknowns. To solve these undetermined
problems, Shannon (1948) used an axiomatic method of probability to define a unique function to
measure the uncertainty of a collection of events.

Suppose that X be a random variable with possible outcome values xk, k = 1, . . . ,K and prob-
abilities pk such that

∑
k pk = 1. Shannon defined the entropy of the distribution of probabilities,

p = (p1, . . . , pK)′ as the measure H(p) = −∑K
k=1 pk ln(pk) where 0 · ln(0) = 0. This measure H ob-

tains a maximum when p1 = · · · = pK = 1/K; i.e., the probabilities are uniform. Jaynes (1957a, b)
proposed making use of the entropy concept in choosing the unknown distribution of probabilities in
(1.1). Under the above maximum entropy principle studied by Jaynes, we choose the distribution for
which the information(data) is sufficient to determine the probability assignment.

The definition of the principle of maximum entropy (ME; Jaynes, 1957a, b; Golan et al., 1996a)
about p is given by

H(p) = −
K∑

k=1

pk ln(pk) = −p′ ln p (1.2)

subject to data consistency and normalized-additivity requirements y = X p and p′1 = 1 where 1 is
a K × 1 vector of ones and lnp is a K × 1 vector. This maximum entropy formulation is based on
the work of Shannon (1948) and Jaynes (1957a, b, 1984) and extended by Kullback (1959), Levine
(1980) and Levine and Tribus (1979). The solution to the maximization problem (1.2) can be obtained
from the Lagrangian function

L = −p′ ln p+ λ′(y − X p) + µ′(1 − p′1), (1.3)

where λ and µ are Lagrangian multipliers.
For panel data regression models with strict exogeneity of the regressors, Song and Cheon (2006)

proposed a generalized maximum entropy(GME) approach and showed that their approach provides
a better alternative to classical least squares approaches such as ordinary least squares(OLS), general-
ized least squares(GLS), and feasible generalized least squares(FGLS).

However, their approach has several disadvantages since they did not use a constrained or un-
constrained numerical method as in Golan et al. (1996a) even though the objective function has no
closed-form solution. Their estimates computed by a least squares method do not satisfy one among
the optimal conditions. In their simulation studies, their new design matrix using the modified sin-
gular value decomposition is not appropriate in panel data regression models. Finally, their iterative
method is too sensitive to the choice of starting values compared with our new methodology.

In this paper, we overcome the drawback of Song and Cheon (2006) by adopting Golan et al. (1996a)’s
unconstrained dual GME procedures so that all the assumptions stated in Golan et al. (1996a) are sat-
isfied. We consider panel data regression models with strict exogeneity as well as collinearity and
endogeneity.

The rest of this paper is organized as follows. Section 2 gives the definition of a panel data regres-
sion model and introduces existing estimation methodologies. In Section 3, we describe the dual GME
methodology for a panel data regression model. Section 4 provides computational details and consid-
ers the performance of several different estimation methods throughout Monte Carlo simulations, and
the last section provides a final remark of the main results.
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2. Panel Data Regression Models

As a point of departure, consider the following panel data regression model (Hsiao, 1986; Baltagi,
2001),

ynt = x′ntβ + unt, n = 1, . . . ,N; t = 1, . . . , T, (2.1)

where ynt is the observation on a dependent variable for the nth cross sectional unit (e.g., individuals,
firms, countries) at the tth time period, xnt and β denote the K × 1 vectors of independent variables
and regression coefficients, respectively, and unt is the regression disturbance. The prime symbol also
indicates the transpose of a matrix or vector.

The regression disturbance unt follows an error components structure

unt = µn + εnt,

where µn denotes the nth individual specific effect assumed to be i.i.d.(0, σ2
µ) and εnt is the remainder

disturbance assumed to be i.i.d.(0, σ2
ε) which is independent of µn.

The model (2.1) can be rewritten in matrix notation as

y = Xβ + u, (2.2)

where y is now of dimension NT × 1, X is NT × K where the constant is absorbed into X, β is K × 1,
and u is NT × 1. The error term u can be written in vector form as

u = (IN ⊗ ι̇T )µ + ε, (2.3)

with u′ = (u11, . . . , u1T , . . . , uN1, . . . , uNT ), µ′ = (µ1, . . . , µN), and ε′ = (ε11, . . . , ε1T , . . . , εN1, . . . , εNT ),
where IN is a N×N identity matrix, ι̇T is a T ×1 vector of ones, and ⊗ denotes the Kronecker product.

Under these assumptions, the variance-covariance matrix for u is

Σ ≡ Cov(u) = E(uu′) = σ2
µ (IN ⊗ JT ) + σ2

εINT

=
(
Tσ2

µ + σ
2
ε

) (
IN ⊗ J̄T

)
+ σ2

ε

(
INT − IN ⊗ J̄T

)
= σ2

αA + σ2
εB, (2.4)

where JT is a T × T matrix of all ones, J̄T = JT /T , σ2
α = (Tσ2

µ + σ
2
ε), A = (IN ⊗ J̄T ), and

B = (INT − IN ⊗ J̄T ) . In (2.4), two matrices A and B are orthogonal to each other and idempotent,
and they sum up to the identity matrix. Therefore, the inverse of Σ is, as devised by Wansbeek and
Kapteyn (1989),

Σ−1 = σ−2
α A + σ−2

ε B. (2.5)

As classical least squares estimators for the panel data regression model, an OLS estimator is β̂OLS =

(X′X)−1Xy, which is consistent when N goes to infinity but T remains finite as well as asymptotically
normally distributed under the above assumptions. Knowing the value of Σ in (2.4), a GLS estimator
is given by β̂GLS = (X′Σ−1X)−1XΣ−1y. Given the assumptions stated above the GLS estimator is
unbiased and efficient; moreover, it is consistent, asymptotically efficient, and normally distributed
for N going to infinity with finite T .
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In practice, Σ is unknown and has to be estimated. A FGLS estimator is obtained by a consistent
estimator of Σ, say Σ̂. That is, β̂FGLS = (X′Σ̂−1X)−1XΣ̂−1y, which is asymptotically equivalent to the
GLS estimator as long as N tends to infinity. Amemiya(AM) (1971) proposed an estimator of Σ using
two estimators of the variance components using the least squares dummy variable residuals, say ũ;
i.e., Σ̂

−1
= σ̂−2

α A + σ̂−2
ε B where σ̂2

α = ũ′Aũ/tr(A) and σ̂2
ε = ũ′Bũ/tr(B). Amemiya showed that

the proposed estimators have the same asymptotic distribution as that knowing the true disturbances.
Swamy and Arora(SA) (1972) proposed two regressions (within and between) to estimate σ2

a and σ2
ε

from respective mean square errors, which are σ̌2
α = 1/(N − K)[y′Ay − y′AX(X′AX)−1X′Ay] and

σ̌2
ε = 1/(N(T − 1)−K + 1)[y′By− y′BX−1(X′−1BX−1)−1X′−1By], where X−1 indicates a design matrix

which does not include a column of ones for the intercept.
So far, we assume that E(µn|xn) = 0 for every n as well as E(εnt |xn) = 0 for every n and t; that

is, we consider a panel data model with strictly exogeneous regressors. However, the endogeneity
can be caused by omitted variables, measurement error, and simultaneous equations. Since the effect
of endogeneity is biased in estimates and two types of errors (Type I and Type II) occur in testing
hypotheses, the endogeneity is one of the most major challenges in econometric analysis, especially
in panel data analysis. All of the solutions require finding an instrumental variable; for example, a
two-stage least squares(2SLS) or a generalized method of moments(GMM) estimation as appropriate.

As estimators using instruments, Im et al. (1999) uses the instruments Zn ≡ IT ⊗ xo
n in order to

estimate β under the assumption E(Xn⊗un) = 0, where Xn is the T×K matrix of explanatory variables
for the nth individual; un is the T × 1 vector of the disturbances for this individual; and xo

n is the row
vector containing every row of Xn . Then the three-stage least squares(3SLS) estimator of β is defined
as

β̂3SLS =

[
X′Z

(
Z′Σ̂Z

)−1
Z′X

]−1
X′Z

(
Z′Σ̂Z

)−1
Z′y, (2.6)

where Σ̂ = IN ⊗ Σ̂
∗
, Σ̂
∗
=

∑N
n ûnû′n, and ûn = yn − Xnβ̂, and β̂ is the two-stage least squares estimator

of β. Wooldridge (2003) stated that the 3SLS estimator above is a bit different from the usual 3SLS
estimator that appeared in most textbooks and called it a traditional 3SLS estimator(T3SLS). T3SLS
is defined as

β̂T3SLS =

 N∑
n=1

Ẋ′nΣ̂
∗Ẋn

−1  N∑
n=1

Ẋ′nΣ̂
∗yn

 , (2.7)

where Ẋn = Xn(Z′Z)−1Z′X. He also noted that the 3SLS estimator is consistent under three assump-
tions, which are (i) E(Z′nun) = 0, (ii) rank[E(Z′nXn)] = K, and (iii) Σ̂ is consistent, but the traditional
3SLS estimator is not.

Since a generalized methods of moments(GMM) estimation was formalized by Hansen (1982), a
GMM has become the most recently popularized estimation techniques in many fields such as eco-
nomics and finance. A GMM estimator, which also leads to consistency and efficiency under some
regularity conditions (Ahn and Schmidt, 1999), is

β̂GMM =

[
X′ZV̂−1Z′X

]−1
X′ZV̂−1Z′y, (2.8)

where V̂ =
∑

n Z′nûnû′nZn and ûn is the two-stage least squares estimator as before. Ahn and Schmidt
(1999) mentioned that this GMM estimator is asymptotically identical to the 3SLS estimator under
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the condition E(Z′nunu′nZn) = E(Z′nΣ
∗Zn). However, the GMM estimator is more efficient than the

3SLS estimator when the condition is not satisfied.
Other instrumental variables estimators, the filtered instrumental variables(FIV) estimator and the

generalized instrumental variables(GIV) estimator, are popular in the panel data analysis as well. FIV
and GIV estimators are defined by, respectively. Refer to Ahn and Schmidt (1999) and Im et al. (1999)
for more details.

β̂FIV =

[
X′Σ̂−

1
2 Z

(
Z′Z

)−1 Z′Σ̂−
1
2 X

]−1
X′Σ̂−

1
2 Z

(
Z′Z

)−1 Z′Σ̂−
1
2 y, (2.9)

β̂GIV =

[
X′Σ̂−1Z

(
Z′Σ̂−1Z

)−1
Z′Σ̂−1

X
]−1

X′Σ̂−1Z
(
Z′Σ̂−1Z

)−1
Z′Σ̂−1y. (2.10)

Baltagi (2001) pointed out that panel data usually give a large number of data points, increasing
the degrees of freedom and reducing the collinearity among explanatory variables because the cross-
sectional dimension adds lots of variability. However, we cannot avoid collinearity even in panel data
analysis if there are several categorical or dummy variables as explanatory variables. When we use a
statistical package such as SAS, STATA, or SPSS to analyze such panel data, an error may occur with
no surprise.

3. A Dual Generalized Maximum Entropy Estimator

3.1. A review of the GME problem

We first describe the GME methodology for a panel data regression model, introduced by Song and
Cheon (2006). First of all, let reparameterize β and u in (2.2) as in Judge and Golan (1992).

β = Z p =


z′1 0 · · · 0
0 z′2 · · · 0
...

...
. . .

...
0 0 · · · z′K




p1
p2
...

pK

 , (3.1)

where Z is a K × KM matrix, p is a KM × 1 vector, βk =
∑

m zkm pkm for every k, z′k = (zk1, . . . , zkM),
and p′k = (pk1, . . . , pkM). In (2.3),

µ = Fg =


f ′1 0 · · · 0
0 f ′2 · · · 0
...

...
. . .

...
0 0 · · · f ′N




g1
g2
...

gN

 , (3.2)

where F is a N × NR matrix, g is a NR × 1 vector, µn =
∑

r fnrgnr for every n, f ′n = ( fn1, . . . , fnR), and
g′n = (gn1, . . . , gnR). Moreover,

ε = Vw =


v′11 0 · · · 0
0 v′12 · · · 0
...

...
. . .

...
0 0 · · · v′NT




w11
w12
...

wNT

 , (3.3)
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where V is a NT × NT J matrix, w is a NT J × 1 vector, εnt =
∑

j vnt jwnt j for every n and t, v′nt =

(vnt1, . . . , vntJ), and w′nt = (wnt1, . . . ,wntJ).
Then, we can rewrite (2.2) as a generic linear model

y = Xβ + u = XZ p+ (IN ⊗ ι̇T )Fg + Vw.

Therefore, the generic GME problem selects p, g, w(∈ (0, 1)) to maximize

H(p, g,w) = −p′ log(p) − g′ log(g) − w′ log(w),

subject to ι̇K = (IK ⊗ ι̇′M)p, ι̇N = (IN ⊗ ι̇′R)g and ι̇NT = (INT ⊗ ι̇′J)w. Then, the Lagrangian function is

L = −p′ log(p) − g′ log(g) − w′ log(w) + λ′
[
y − XZ p− (IN ⊗ ι̇T )Fg − Vw

]
+ θ′

[
ι̇K − (IK ⊗ ι̇′M)p

]
+ γ′

[
ι̇N − (IN ⊗ ι̇′R)g

]
+ τ′

[
ι̇NT − (INT ⊗ ι̇′J)w

]
. (3.4)

Taking the gradient of L to derive the first-order conditions, we have

∇pL = − log(p) − ι̇KM − Z′X′λ − (IK ⊗ ι̇M)θ = 0,
∇gL = − log(g) − ι̇NR − F′(IN ⊗ ι̇′T )λ − (IN ⊗ ι̇R)γ = 0,
∇wL = − log(w) − ι̇NT J − V′λ − (INT ⊗ ι̇J)τ = 0,
∇λL = y − XZ p− (IN ⊗ ι̇T )Fg − Vw = 0,
∇θL = ι̇K − (IK ⊗ ι̇′M)p = 0,
∇γL = ι̇N − (IN ⊗ ι̇′R)g = 0,
∇τL = ι̇NT − (INT ⊗ ι̇′J)w = 0.

After some algebra, we obtain

p = exp(−Z′X′λ) ⊙ exp [−ι̇KM − (IK ⊗ ι̇M)θ] , (3.5)
g = exp(−F′(IN ⊗ ι̇′T )λ) ⊙ exp

[−ι̇NR − (IN ⊗ ι̇R)γ
]
, (3.6)

w = exp(−V′λ) ⊙ exp [−ι̇NT J − (INT ⊗ ι̇J)τ] , (3.7)

where ⊙ denotes the Hadamard product.
Furthermore, since exp [−ι̇KM − (IK ⊗ ι̇M)θ] =

{
(IK ⊗ J M) exp(−Z′X′λ)

}⊙(−1), (3.5) can be rewrit-
ten as

p = exp(−Z′X′λ) ⊙ {
(IK ⊗ J M) exp(−Z′X′λ)

}⊙(−1) , (3.8)

where ⊙(−1) means the Hadamard inverse; that is, the elementwise reciprocation. In a similar way,
(3.6) and (3.7) can be rewritten, respectively, as

g = exp(−F′(IN ⊗ ι̇′T )λ) ⊙ {
(IN ⊗ JR) exp(−F′(IN ⊗ ι̇′T )λ)

}⊙(−1) , (3.9)

w = exp(−V′λ) ⊙ {
(INT ⊗ J J) exp(−V′λ)

}⊙(−1) . (3.10)

3.2. A dual version of the GME problem

Now we describe a dual version of the GME problem which may be solved with simpler and more
widely available unconstrained numerical methods, and then propose a dual generalized maximum
entropy(dual GME, D-GME) estimator.
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Table 1: Comparison of the regression coefficient estimates in Model 1

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 0.142 0.142 0.145 0.145 0.152 0.158 0.166 0.154 0.158 0.122
0.2 0.180 0.164 0.166 0.166 0.188 0.187 0.209 0.184 0.187 0.148
0.4 0.216 0.159 0.160 0.161 0.204 0.183 0.234 0.188 0.183 0.145
0.6 0.243 0.143 0.144 0.144 0.206 0.169 0.257 0.179 0.169 0.126
0.8 0.289 0.127 0.127 0.127 0.208 0.154 0.273 0.170 0.154 0.108
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Figure 1: Comparison of the regression coefficient estimates in Model 1

Building on the Lagrangian function (3.4) and the solutions (3.8) through (3.10), the dual objective
is

L = −p′ log(p) − g′ log(g) − w′ log(w) + λ′
[
y − XZ p− (IN ⊗ ι̇T )Fg − Vw

]
= −p′

[−Z′X′λ − log(Ω(λ))
] − g′

[−F′(IN ⊗ ι̇′T )λ − log(Φ(λ))
]

− w′
[−V′λ − log(Ψ(λ))

]
+

[
y′ − p′Z′X′ − g′F′(IN ⊗ ι̇′T ) − w′V′

]
λ

= y′λ + p′ log(Ω(λ)) + g′ log(Φ(λ)) + w′ log(Ψ(λ)), (3.11)

where Ω(λ) = (IK ⊗ J M) exp(−Z′X′λ),Φ(λ) = (IN ⊗ JR) exp(−F′(IN ⊗ ι̇′T )λ) and Ψ(λ) = (INT ⊗
J J) exp(−V′λ). More specifically, L can be written by

L = y′λ +
K∑

k=1

log(Ωk(λ)) +
N∑

n=1

log(Φn(λ)) +
N∑

n=1

T∑
t=1

log(Ψnt(λ)), (3.12)

whereΩk(λ) =
∑

m exp(−zkm
∑

n
∑

t xkntλnt),Φn(λ) =
∑

r exp(− fnr
∑

t λnt) andΨnt(λ) =
∑

j exp(−vnt jλnt).
Then, the dual GME estimator of β is defined as

β̂D-GME = Z p̂, (3.13)

where p̂ = exp(−Z′X′λ̂) ⊙ {(IK ⊗ J M) exp(−Z′X′λ̂)}⊙(−1) from (3.8), and λ̂ = minλL from (3.12).
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Table 2: Comparison of the regression coefficient estimates in Model 2

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 1.036 1.036 1.032 0.978 1.369 1.465 1.084 1.411 1.465 0.296
0.2 0.936 1.028 0.948 0.892 1.243 1.414 0.992 1.357 1.414 0.278
0.4 0.809 0.931 0.829 0.797 1.033 1.277 0.857 1.217 1.277 0.282
0.6 0.625 0.739 0.642 0.629 0.742 1.031 0.652 0.964 1.031 0.292
0.8 0.449 0.444 0.406 0.410 0.406 0.653 0.446 0.592 0.653 0.272
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Figure 2: Comparison of the regression coefficient estimates in Model 2

3.3. Large sample properties of a dual GME estimator

Let HN(λ) (henceforth denoted as H(λ)) be the dual objective function based on new normed-moment
formulation X′y/N = X′XZ p/N + (IN ⊗ ι̇T )Fg + Vw where V = X′u/T . Now we expand ∇λH(λ)
about the true value λ0 to get

∇λH(λ) = ∇λH(λ0) + ∇λλ′H(λ∗)(λ − λ0), (3.14)

where λ∗ is between λ and λ0. Replacing λ by λ̂ in (3.14) and noting that ∇λH(λ̂) = 0, we obtain
√

N
(
λ̂ − λ0

)
= − [∇λλ′H(λ∗)

]−1
[√

N∇λH(λ0)
]
, (3.15)

where
√

N∇λH(λ0) = X′u/
√

N + O(1/
√

N) which converges in law to N(0, Ξ) by the following
assumption; E(u) = 0, Var(u) = Σu, and F(u) satisfies the Lindeberg condition and limN X′ΣuX/N =
Ξ. It leads to limN ∇λλ′H(λ0) = QΣZQ′, where Q = limN(X′X)/N and ΣZ is the covariance matrix of
p. Therefore the limiting distribution for λ̂ is

√
N

(
λ̂ − λ0

)
−→ N

(
0,

(
QΣZQ′

)−1 Ξ(QΣZQ′)−1
)
. (3.16)

Now, by the continuity of β and the delta-method, the limiting distribution for β̂D-GME is
√

N
(
β̂D-GME − β0

)
−→ N

(
0,Q−1ΞQ−1

)
. (3.17)

Refer to Golan et al. (1996a) for large sample properties of more general GME estimators.
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Table 3: Comparison of the prediction risks in Model 1

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 0.534 0.534 0.541 0.539 0.557 0.566 0.576 0.560 0.566 0.523
0.2 0.624 0.600 0.603 0.602 0.639 0.636 0.670 0.633 0.636 0.589
0.4 0.687 0.601 0.604 0.605 0.675 0.644 0.721 0.651 0.644 0.592
0.6 0.744 0.599 0.600 0.600 0.697 0.643 0.767 0.657 0.643 0.580
0.8 0.817 0.572 0.572 0.572 0.712 0.624 0.808 0.653 0.624 0.540
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Figure 3: Comparison of the prediction risks in Model 1

4. Simulated Examples

In this study, we carried out four different simulation studies to assess the performance of our dual
GME estimator.

In the first study, data came from a classical panel data regression model(Model 1). As introduced
by Nerlove (1971) and used by many authors (Arora, 1973; Baltagi, 1981; Heckman, 1981; Wansbeek
and Kapteyn, 1989), the exogenous variables were generated by xnt = 0.1t + 0.5xn,t−1 + wnt, where
wnt is uniformly distributed on the interval [–0.5, 0.5] and xn0 = 5+ 10wn0. Furthermore, x11, . . . , xNT

were independently drawn K − 1 times and then we constructed a design matrix X.
In the error term, µn and εnt were independently generated from N(0, σ2

µ) and N(0, σ2
ε), respec-

tively, where σ2
µ = ρσ

2 and σ2
ε = (1 − ρ)σ2 with σ2 = σ2

µ + σ
2
ε. We set N = 25, T = 5, and σ2 = 10

in all simulations of this paper. However, ρ varied over the set (0, 0.2, 0.4, 0.6, 0.8) such that (1 − ρ)
is always positive.

As for the formation of support matrices (Z, F, and V in Section 3) for parameter β, individual
effect µ, and error ε, we assumed that the diagonal elements of each support matrix are the same; that
is, z1 = · · · = zK in Z of (3.1), f 1 = · · · = f N in F of (3.2), and v11 = · · · = vNT in V of (3.3).

We first computed β̂OLS and then the plausible upper and lower bounds of z were computed by
±3 × ⌈max |β̂OLS|⌉, where ⌈·⌉ indicates min{c ∈ Z|c ≥ · }. Likewise, to find the reasonable upper and
lower bounds of f and v, we used σ̌2

µ and σ̌2
ε of Swamy and Arora (1972). We also assumed that all

support vectors, z, f , and v, consist of equally distanced discrete points and are centered at zero. We
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Table 4: Comparison of the prediction risks in Model 2

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 2.580 2.580 2.574 2.083 3.127 3.259 2.676 3.187 3.259 1.623
0.2 2.251 2.412 2.281 1.977 2.697 2.942 2.345 2.856 2.942 1.326
0.4 1.884 2.111 1.945 1.787 2.221 2.539 1.963 2.453 2.539 1.165
0.6 1.492 1.718 1.565 1.505 1.681 2.051 1.545 1.963 2.051 1.063
0.8 1.101 1.182 1.116 1.112 1.074 1.413 1.112 1.329 1.413 0.920
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Figure 4: Comparison of the prediction risks in Model 2

fixed M = 5 for the number of support points since Golan et al. (1996a) showed that the variance of the
point estimator decreases as M increases but the empirical prediction risk as well as computational
burden also increase; additionally, they argued that using M = 5 gave the greatest improvement in
precision through empirical studies; see Section 8.7 in Golan et al. (1996a) for more details.

The dual GME estimation can be performed using any standard nonlinear optimization methods.
Here, we used a Newton-type algorithm for our computation. We used R software, invoking the non-
linear minimization(nlm; Dennis and Schnabel, 1983; Schnabel et al., 1985) routine to calculate the
dual GME estimates. The nlm function carries out a minimization of an objective function using a
Newton-type algorithm. For numerical optimizations involving Newton-type algorithms, the choice of
initial values is critical. For our dual GME procedure, extensive preliminary simulations indicated that
the estimation is not sensitive to the choice of initial values at all. In fact, we conducted simulations
where the initial values were randomly chosen from a normal distribution.

For the second study we considered a panel data regression model with endogenous explanatory
variables (Model 2). We followed the simulation scheme given by Everaert and Pozzi (2014) of
setting endogeneity which εnt is expected to be contemporaneously correlated with some regressors.
Especially, in our design matrix, the fourth regressor was computed by x4nt + 0.4εnt, which results in
an inconsistent estimator. Other settings are the same as in Model 1.

The third simulation study examined the collinearity problem in a panel data regression model
(Model 3). Song and Cheon (2006) proposed the GME estimator to handle collinearity in a panel
regression model with strictly exogenous explanatory variables. In order to form a design matrix in
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Table 5: Comparison of the regression coefficient estimates in Model 3

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 48.158 48.158 47.409 48.482 51.720 55.183 59.331 52.346 55.183 4.524
0.2 47.178 44.597 44.009 44.820 51.662 51.166 54.419 49.630 51.166 5.248
0.4 47.581 33.797 33.842 34.213 48.020 39.308 56.032 39.911 39.308 5.727
0.6 46.064 23.308 23.213 23.392 44.541 29.188 50.234 30.557 29.188 5.721
0.8 44.430 12.121 12.118 12.135 36.609 15.380 45.007 17.125 15.380 4.633
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Figure 5: Comparison of the regression coefficient estimates in Model 3

which there is a linear relationship among one or more of the independent variables, as in Golan et
al. (1996a) they created a new design matrix by replacing the singular values of X with (

√
2/(1 + κ), 1,

1,
√

2κ/(1 + κ) where κ is a condition number of X′X.
However, their methodology has some imitations. First, they used a least squares method to

compute the GME estimates, instead of a dual Lagrange multiplier method suggested by Golan et
al. (1996a). Consequently, their estimates computed by a least squares method do not satisfy one
among the optimal conditions of Lagrangian function in (3.4) of the Section 3; i.e., ∇λL = y −
XZ p − (IN ⊗ ι̇T )Fg − Vw = 0. Second, their new design matrix using the modified singular value
decomposition is appropriate only in classical regression models. That is, in panel data regression
models their formation of a design matrix with a desired condition number causes the nature of time
series to be lost. Finally, their iterative method for solving the least squares problem is highly sensitive
to the choice of initial values.

In contrast, we solved a unconstrained dual GME problem and found more efficient estimates. In
order to construct collinear panel data series, as in Belsley (1991, Chapter 4), the fourth regressor(X4)
was constructed as X4 = 0.2X2+ε, where εnt ∼ N(0, 10−2Var(0.2X2)I). Once again, we used normal-
distributed random numbers for starting points to compute our dual GME estimates.

In the last study, we considered an integrated model with Model 2 and 3; a collinear panel
data regression model with endogenous explanatory variables (Model 4). As in Model 2 and 3,
we replaced the fourth regressor with x4nt + 0.4εnt and the third regressor with 0.2x2nt + εnt, where
εnt ∼ N(0, 10−2Var(0.2x2nt)I).
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Table 6: Comparison of the prediction risks in Model 3

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 0.533 0.533 0.535 0.536 0.553 0.562 0.583 0.555 0.562 0.453
0.2 0.589 0.566 0.567 0.569 0.609 0.603 0.632 0.601 0.603 0.506
0.4 0.652 0.579 0.581 0.582 0.649 0.619 0.687 0.625 0.619 0.533
0.6 0.728 0.592 0.593 0.594 0.689 0.630 0.750 0.645 0.630 0.554
0.8 0.764 0.563 0.564 0.564 0.676 0.601 0.760 0.619 0.601 0.528
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Figure 6: Comparison of the prediction risks in Model 3

Table 7: Comparison of the regression coefficient estimates in Model 4

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 18.652 18.652 18.514 86.871 10.952 8.541 18.037 9.180 8.541 1.991
0.2 26.759 17.455 23.605 93.081 20.468 9.393 26.396 11.569 9.393 2.017
0.4 32.847 15.112 23.567 63.579 29.327 10.290 33.981 13.176 10.287 2.011
0.6 37.001 12.348 18.274 32.860 35.446 10.690 38.037 13.932 10.694 1.983
0.8 43.397 8.5141 11.153 14.060 37.022 9.614 43.482 12.889 9.614 1.889

In order to assess the performance of β̂D-GME, we considered β′ = (β1, β2, β3, β4) = (1, 2, 3, 4).
We implemented our dual GME computational algorithm described above with 1000 Monte Carlo
replications. In order to avoid any sampling bias and ensure fair comparison between our estimate and
others, we computed each of the ten estimates (OLS, GLS, FGLS(AM), FGLS(SA), 3SLS, T3SLS,
GMM, FIV, GIV, and D-GME) using the same generated data set in each replication. We reported
the mean squared error of each estimator(β̂) and the root mean squared error(RMSE) of predicted
values(ŷ) for each model. MSE and RMSE were estimated by (

∑K
i=1 MSEi)/K and (

∑K
i=1 RMSEi)/K

respectively, where MSEi(β̂) = Var(β̂) + [E(β̂) − β]2 and RMSEi =

√
MSEi(β̂) for i, . . . ,K. In this

simulation, we set K = 10. For ease of comparison, the smallest MSE and RMSE were identified in
bold.

Tables and Figures 1 and 3 show that for Model 1, the dual GME is more efficient than the other
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Figure 7: Comparison of the regression coefficient estimates in Model 4

Table 8: Comparison of the prediction risks in Model 4

ρ OLS GLS
FGLS
(AM)

FGLS
(SA) 3SLS T3SLS GMM FIV GIV D-GME

0.0 2.532 2.532 2.530 2.118 3.091 3.248 2.618 3.169 3.248 1.548
0.2 2.216 2.360 2.232 2.005 2.651 2.944 2.304 2.848 2.944 1.449
0.4 1.818 2.034 1.871 1.739 2.123 2.503 1.876 2.404 2.503 1.310
0.6 1.433 1.644 1.499 1.449 1.567 2.002 1.466 1.902 2.002 1.152
0.8 1.015 1.118 1.042 1.035 0.962 1.322 1.027 1.226 1.322 0.909

estimators and the dual GME prediction risk is smaller than the others. For Models 2, 3, and 4,
as expected, the performance of all estimators worsen compared to Model 1 (Tables and Figures
2 through 8). Interestingly, all estimates except for the dual GME are worse, and the dual GME
once again is more efficient than the others. When there are severe problems with collinearity and
endogeneity like Models 3 and 4, which their condition numbers are more than 100, the dual GME
is superior in comparison with the others (Tables and Figures 5 and 7). In summary, these simulation
results show that the dual GME is a preferred choice over the OLS, GLS, FGLS, 3SLS, GMM, FIV,
and GIV in simple, endogenous, as well as collinear panel models.

5. Conclusion

In this paper we have introduced a new dual GME estimator for panel data regression models under
the assumption of exogeneity, endogeneity, or/and collinearity of the regressors. A GME estimator
was initially introduced by Song and Cheon (2006) for the panel data model with strict exogeneity
assumption, but we have modified their critical limitations. As compared to Song and Cheon’s GME
estimator, our dual GME estimator is easy to compute because we applied unconstrained numerical
method rather than constrained one and turned out to be less sensitive to the choice of initial val-
ues through the simulation studies. Our estimates were obtained using truly simulated panel data;
however, Song and Cheon’s estimates were not.

It is known that the dual GME methodology is applicable when the underlying sampling model
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Figure 8: Comparison of the prediction risks in Model 4

is incompletely or incorrectly known and the data are limited, partial or incomplete; however, such
situations are not entirely avoidable in econometrics. With Monte Carlo simulations, we have shown
that the dual GME estimator is a better alternative to classical least squares estimators, instrumental
estimators and GME estimator, especially in a small set of data, to handle ill-posed problems in panel
data and some violations of panel data regression assumptions. Hence, the entropy metric and the
maximum entropy formalism can be extended to more complicated econometric models.
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