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Abstract

Consider the problem of estimating a p × 1 mean vector θ (p ≥ 3) under the
quadratic loss from multi-variate normal population. We find a James-Stein type esti-
mator which shrinks towards the projection vectors when the underlying distribution is
that of a variance mixture of normals. In this case, the norm ‖θ−Kθ‖ is known where
K is a projection vector with rank(K) = q. The class of this type estimator is quite
general to include the class of the estimators proposed by Merchand and Giri (1993).
We can derive the class and obtain the optimal type estimator. Also, this research can
be applied to the simple and multiple regression model in the case of rank(K) ≥ 2.

Keywords: James-Stein type estimator, optimal estimator, projection vector, quadratic
loss.

1. Introduction

There has been considerable interesting in the problem of estimating a p×1 mean vector θ
(p ≥ 3) of a compound multinormal distribution, under the quadratic loss function when the
norm ‖θ−Kθ‖ is known, where K is an idempotent and projection matrix with rank(K) =
q. In these assumptions, we find a James-Stein type estimator which shrinks towards a
projection vector. Such a class was introduced by James-Stein (1961) and Lindley (1962) in
order to prove that some of its members dominate the natural estimator in the multinormal
case. A similar result for the more general case was also derived by Strawderman (1974).

The problem of estimation of a mean under constraint has focussed in the context of curved
model in the works of Kariya (1989), Perron and Giri (1989), Merchand and Giri (1993),
and Baek and Lee (2005) among others. A study of compound multinormal distributions
and the estimation of their location vectors was carried out by Berger (1975).

George (1990) suggested that it might be possible to use the improved variance estimator
to improve the James-Stein type estimator with some shrinkage points. Kim et al. (2002)
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produced a class of estimators dominating the James-Stein type estimator with some shrink-
age points and Park and Baek (2014) considered the generalized Bayes estimator dominating
same type estimators.

This paper improves the James-Stein type estimator which shrinks towards a projection
vector when the underlying distribution is that of a variance mixture of normals. In section
2, we present the general setting of our problem and develop necessary notations. In section
3, we examine the estimation problem based on a James-Stein estimator shrinkage toward
some projection vectors when the norm ‖θ−Kθ‖ is known. In this case, we give to the class
of James-Stein estimators shrinkage toward vector which dominate the usual estimator. The
result of Merchand and Giri (1993) and Baek (2000) are special cases of this paper when
rank(K) = 0 and 1, respectively. Also, we can apply this result to the regression model in
case of rank(K) ≥ 2 in concluding remarks.

2. Preliminaries

Let Y = (Y1, · · · , Yp)′, p − q ≥ 3, be a single sample from a compound multinormal
distribution with unknown location parameter θ(p×1) and mixture parameter H(•), where
H(•) represents a known c.d.f defined on the positive real number. We can represent

£(Y |S = s) = Np(θ, sIp), ∀s > 0, (2.1)

where S is the positive random variable with c.d.f. H(•).
We estimate the location parameter θ with loss function.

L(θ, δ(Y )) = (δ(Y )−θ)′(δ(Y )− θ),

with θ ∈ Θλ = {θ ∈ Rp| ‖θ − Kθ‖ = λ, 0 ≤ λ < ∞}, where K is an idempotent and
projection matrix with rank(K) = q. Consider the estimator

δ(Y ) = KY +

(
1−

c

(Y −KY )′(Y −KY )

)
(Y −KY ), c ∈ R.

Restated in terms of the family of probability density functions of Y , the distributional
assumption give by expression (2.1) and the restriction on the location parameter θ indicate
that the p.d.f. of Y is

Pθ(y) =

∫
(0,∞)

(2πs)−p/2 exp

(
‖y − θ‖2

2s

)
dH(s), (2.2)

y ∈ Rp and θ ∈ Θλ. It will be also assumed that E(S) < ∞, the covariance matrix
Σ = Cov(Y ) = E(S)Ip, and the mean vector E(Y ) = θ. The risk function of the estimator
δ is

R(θ, δ) = Eθ[L(θ, δ(Y ))] = Eθ[(δ(Y )− θ)′(δ(Y )− θ)], θ ∈ Θλ.
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3. The improved class of James-Stein type estimators towards
projection vector

In this section, the best estimator is derived within

DK =

{
δc : Rp → Rp|δc(Y ) = Y +

(
1−

c

(Y −KY )′(Y −KY )
(Y −KY )

)
, c ∈ R

}

where the parameter space is of the form

Θλ = {θ ∈ Rp| ‖θ −Kθ‖ = λ} , λ ≥ 0.

The following lemmas will prove useful in the evaluation of the risk function of the esti-
mator δc, c ∈ R.

Lemma 3.1 Let Y be a random multinormal vector Np(θ, Ip), p ≥ q + 3 and θ ∈ Rp.
Then

(i) Eθ

(
1

(Y−KY )
′
(Y −KY )

)
= EL

(
1

p− q + 2L− 2

)

and

(ii) Eθ

(
(Y − θ)′(Y −KY )

(Y−KY )
′
(Y −KY )

)
= EL

(
p− q − 2

p− q + 2L− 2

)

where L is a Poisson random variable with mean (θ −Kθ)′(θ −Kθ)/2

Proof : See James and Stein(1961) and use Stein’s Identity �

Lemma 3.2 Let Y be a compound multinormal vector with location parameter θ ; p ≥ q+3
and θ ∈ Rp ; and known mixture parameter H(•) with p.d.f. of the form given in (2.2). Then,
with λ = ‖θ −Kθ‖

(i) Eθ

(
1

(Y −KY )′(Y −KY )

)
=

∫
(0,∞)

fp−q(λ, s)
dH(s)

s
,

(ii) Eθ

(
(Y−θ)′(Y −KY )

(Y −KY )′(Y −KY )

)
= (p− q − 2)

∫
(0,∞)

fp−q(λ, s)dH(s),

where the function fp−q(•,•) : [0,∞)→ (0,∞), is defined by the relation

fp−q(λ, s) =

∞∑
j=0

e−
λ2

2s

(
λ2

2s

)j
j!(p− q − 2j − 2)
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Proof : (i) Using both the representation given in (2.1) and part(i) of Lemma 3.1, we obtain

Eθ

(
1

(Y −KY )′(Y −KY )

)
=ES

{
S−1EX|S

[
S

(Y −KY )′(Y −KY )

]}

=

∫
(0,∞)

s−1
∞∑
j=0

e−
λ2

2s

(
λ2

2s

)j
j!(p− q − 2j − 2)

dH(s)

=

∫
(0,∞)

fp−q(λ, s)
dH(s)

s

(ii) Again, combining the representation given in (2.1) and part(ii) of Lemma 3.1, we obtain

Eθ

(
(Y−θ)′(Y −KY )

(Y −KY )′(Y −KY )

)
=ES


E
Y |S
θ


(
Y−θ
√
S

)′(
Y −KY
√
S

)
(
Y −KY
√
S

)′(
Y −KY
√
S

)



=

∫
(0,∞)

∞∑
j=0

e−
λ2

2s

(
λ2

2s

)j
j!

p− q − 2

p− q + 2j − 2
dH(s)

=(p− q − 2)

∫
(0,∞)

fp−q(λ, s)dH(s)

�

The main result of this section now follows.

Theorem 3.1 Let Y be a single sample from a p-dimensional location parameter with p.d.f.
of the form given by (2.2). Under the assumptions θ ∈ Θλ, p ≥ q + 3 and E[S] < ∞, the

unique best estimator within the class DM is given by δc
∗(λ)

where

c∗(λ) = (p− q − 2)

∫
(0,∞)

fp−q(λ, s)dH(s)∫
(0,∞)

fp−q(λ, z)
dH(s)

s

(3.1)

Proof : Under the assumptions above, we can easily derive the result Eθ(Y ′Y ) = θ′θ +
pE(S). Combining this with Lemma 3.2, we have

R(θ, δc) =Eθ[(δc(Y )− θ)′(δc(Y )− θ)]

=pE(S) +

[
c2Eθ

{
1

(Y −KY )′(Y −KY )

}
− 2cEθ

{
(Y − θ)′(Y −KY )

(Y −KY )′(Y −KY )

}]

=pE(S) +

[
c2
∫
(0,∞)

fp−q(λ, s)
dH(s)

s
− 2c(p− q − 2)

∫
(0,∞)

fp−q(λ, s)dH(s)

]

=pE(S) +

[∫
(0,∞)

{
c2

s
− 2c(p− q − 2)

}
fp−q(λ, s)dH(s)

]
(3.2)

�
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From this last equality, we obtain easily that

fc∈RR(θ, δc) = R(θ, δc
∗(λ))

with c∗(λ) given by expression (3.1).
Using expression (3.2), the minimum risk attained by the best James-Stein type estimator

is equal to

R(θ, δc
∗(λ)) = pE(S)− (p− q − 2)2

[∫
(0,∞)

fp−q(λ, s)dH(s)
]2

∫
(0,∞)

fp−q(λ, s)
dH(s)

s

, θ ∈ Θλ.

When ‖θ−Kθ‖ = λ, the use of other estimators of the James-Stein class other than δc
∗(λ)

will incur risk which is a strictly increasing function of distance |c− c∗(λ)|. To see this, we
can define t(λ) such that c = t(λ)c∗(λ) and, using expression (3.2), express R(θ, δc) as

pE(S) + (p− q − 2)2[t2(λ)− 2t(λ)]

[∫
(0,∞)

fp−q(λ, s)dH(s)
]2

∫
(0,∞)

fp−q(λ, s)
dH(s)

s

(3.3)

From this we can write

R(θ, δc)−R(θ, δc
∗(λ)) = |c− c∗(λ)|2

∫
(0,∞)

fp−q(λ, s)
dH(s)

s
(3.4)

The natural estimator δo(X) = X is a member of the James-Stein class and has a constant
risk function equal to pE(S). We can also characterize the estimators of the James-Stein
type that dominate the natural estimator δo.

Corollary 3.1 Under the conditions of Theorem 3.1, the estimator δc will dominate the
natural estimator δo if and only if 0 < c < 2c∗(λ).

Proof : Using expression (3.3), one easily sees that, for θ ∈ Θλ,

R(θ, δc) < R(θ, δo) = pE(S)

⇔ t2(λ)− 2t(λ) < 0

⇔ 0 < t(λ) < 2

⇔ 0 < c < 2c∗(λ).

�

4. Examples

The class of compound multinormal distributions is quite large and, in this section, we
present some examples of the evaluation of the best James-Stein type estimator for different
choices of the underlying distribution of Y or, equivalently, of the mixture parameter H(•)
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Example 4.1 For Y ∼ Np(θ, σ2Ip), p ≥ q+ 3, (i.e., H(s) = 1(σ2,∞)(s) with 1A(•) being the
indicator function of the set A); we deduce from Theorem 3.3 that

c∗(λ) = (p− q − 2)
fp(λ, δ

2)

fp(λ, σ2)/σ2
= (p− q − 2)σ2,

and that the best estimator within the James-Stein class DM is equal to

δ(p−q−2)σ
2

(Y ) = KY +

(
1−

(p− q − 2)σ2

(Y −KY )′(Y −KY )

)
(Y −KY ),

regardless of the value of the norm λ = ‖θ −Kθ‖
For non-normal cases, the following explicit formula for the quantity f∗p−q(γ) = EL[(p −

q + 2L− 2)−1], L ∼ Poisson (γ), given by Egerton and Laycock (1982) prove useful for the
evaluation of the function c∗(λ), λ ≥ 0.

Lemma 4.1 Let L be a Poisson random variable with mean γ > 0, and

(i) f∗p−q(γ) = e−γ
∫
(0,1)

tp−q−3eγt
2

dt,

and

(ii) f∗p−q+2(γ) = (2γ)−1[1− (p− q − 2)f∗p−q(γ)] (4.1)

For odd values of the dimension p − q, the recurrence formula given by expression (4.1)
permits the expression of the function f∗p−q (•) as a function of f∗3 (•). From part(i) of the
preceding lemma,

f∗3 (γ) =e−γ
∫
(0,1)

eγt
2

dt

=γ−
1
2D(γ

1
2 ),

where D(y) = e−y
2 ∫

(0,y)
et

2

dt, y > 0, is known as Dawson’s integral which is tabulated

in Abramowitz and Stegun (1965). For even values of the dimension p − q, the recurrence
formula given by expression (4.1) permits the expression of the function f∗p−q (• as a function
of f∗4 (•). From part(i) of Lemma 4.1,

f∗4 (γ) =e−γ
∫
(0,1)

teγt
2

dt

=(2γ)−1(1− e−γ) (4.2)

We now proceed with the evaluation of the best James-Stein estimator in the contaminated
multinormal case.

Example 4.2 Setting H(s) =
∑n
j=1 εj1[σ2

j ,∞)(s) in expression (2.2), where 0 < εj < 1, σ2
j >

0 for j ∈ (1, · · · , n) and
∑n
j=1 εj = 1, we obtain the family of contaminated multinormal
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distributions with mean parameter θ and known dispersion parameters (σ2
1 , ε1), · · · , (σ2

n, εn).
The function c∗(λ), λ ≥ 0, defined by (3.1) becomes

c∗(λ) = (p− q − 2)

n∑
j=1

εjfp(λ, σ
2
j )

n∑
j=1

εj
σ2
j
fp(λ, σ2

j )
,

and the decision rule δc
∗(λ) represents, by Theorem 3.3, the best James-Stein type estimator

when θ ∈ Θλ. The quantities fp−q(λ, σ
2
j ) can be evaluated by using the results of Lemma

4.1. In particular, for p− q = 6, using expressions (4.1) and (4.2), we obtain

f6(λ, s) =f∗6

(
λ2

2s

)
=λ−4s(λ2 − 2s+ 2se−λ

2/2s), λ > 0, s > 0,

and

c∗(λ) = 4

n∑
j=1

εjσ
2
j (λ2 − 2σ2

j + 2σ2
j e
−λ2/2σ2

j )

n∑
j=1

εj(λ2 − 2σ2
j + 2σ2

j e
−λ2/2σ2

j )

Example 4.3 Setting £(s−1) = Gamma(a, b), a > 1 and b > 0, in the representation given

by expression (2.1), we obtain the family of multivariate student distributions with mean
parameter θ (the condition a > 1 guaranteeing the existence of a covariance matrix) and
known dispersion parameter (a, b). Here, we extend the usual class of multivariate student
location families with n degrees of freedom, where n = 2a = 2b and n ∈ (1, 2, · · · ), to include
other values of the dispersion parameter (a, b). For the particular case where p− q = 4, we
obtain by expressions (3.1) and (4.2),

f4(λ, s) = f∗4

(
λ2

2s

)
= λ−2s(1− e−λ

2/2s), λ > 0, s > 0,

and

c∗(λ) =2

∫
(0,∞)

s(1− e−λ2/2s)dH(s)∫
(0,∞)

(1− e−λ2/2s)dH(s)

=2

∫
(0,∞)

(v−1 − v−1e−λ2v/2)va−1e−bvdv∫
(0,∞)

(1− e−λ2v/2)va−1e−bvdv

=
2b

a− 1

[1−
(

2b
2b+λ2

)a−1
]

[1−
(

2b
2b+λ2

)a
]
.
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5. Concluding remarks

K has several special cases as follows :
Let the Op×p and J be the p × p matrices all entries are 0′s and 1′s, respectively. The
estimators in Marchand and Giri (1993) and Baek (2000) are the case of K = Op×p and
K = (1/p)J . Another case is K = T (T ′T )−1T ′ when T =

(
1 1 · · · 1
t1 t2 · · · tp

)
and θi =

α+βti for known ti and unknown α and β (Lehmann and Casella, 1999), this is the case of
rank(K) = 2. More general case would be represented as follows. When

T =


1 1 · · · 1
t11 t12 · · · t1p
...

...
th1 th2 · · · thp


and θi = α+ β1t1i + β2t2i + · · ·+ βhthi for known t1i, t2i, · · · , thi and unknown α, and β1,
β2, · · · , βh, such projection matrices K = T (T ′T )−1T ′ are symmetric and idempotent of
rank h+ 1. It is left to further research to execute the simulation of these results.

References

Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical functions, Dover, New York.
Baek, H. Y. (2000). Lindley type estimators with the known norm. Journal of the Korean Data & Infor-

mation Science Society, 11, 37-45.
Baek, H. Y. and Lee, J.M. (2005). Lindley type estimators when the norm is restricted to an interval.

Journal of the Korean Data & Information Science Society, 16, 1027-1039.
Berger, J. (1975). Minimax estimation of location vectors for a wide class of densities. Annals of Statistics,

3, 1318-1328.
Egerton, M. F. and Laycock, P. J. (1982). An explicit formula for the risk of James-Stein estimators. The

Canadian Journal of Statistics, 10, 199-205.
George, E. I. (1990). Developments in decision-theoretic variance estimation : Comment. Statistical Science,

5, 107-109.
James, W. and Stein D. (1961). Estimation with quadratic loss. In Proceedings Fourth Berkeley Symp.

Math. Statis. Probability, 1, University of California Press, Berkeley, 361-380.
Kariya, T. (1989). Equivariant estimation in a model with ancillary statistics. Annals of Statistics, 17,

920-928.
Kim, B. H., Baek, H. Y. and Chang, I.H. (2002), Improved estimators of the natural parameters in continuous

multiparameter exponential families. Communication in Statistics-Theory and Methods, 31, 11-29.
Lehmann, E. L. and Casella, G. (1999).Theory of Point Estimation, 2nd Ed., Springer-Verlag, New York.
Lindley, D. V. (1962). Discussion of paper by C. Stein. Journal of The Royal Statistical Society B , 2,

265-296.
Marchand, E. and Giri, N. C. (1993). James-Stein estimation with constraints on the norm. Communication

in Statistics-Theory and Methods, 22, 2903-2924.
Park, T. R. and Baek, H. Y. (2014). An approach to improving the James-Stein estimator shrinking towards

projection vectors. Journal of the Korean Data & Information Science Society, 25, 1549-1555.
Perron, F. and Giri, N. (1989). On the best equivariant estimator of mean of a multivariate normal popu-

lation. Journal of Multivariate Analysis, 32, 1-16.
Strawderman, W. E (1974). Minimax estimation of location parameters for certain spherically symmetric

distributions. Journal of Multivariate Analysis, 4, 255-264.


