• Title/Summary/Keyword: red algae

Search Result 459, Processing Time 0.021 seconds

Mitochondrial cox1 and cob sequence diversities in Gelidium vagum (Gelidiales, Rhodophyta) in Korea

  • Yoon, Kyung Ju;Kim, Kyeong Mi;Boo, Ga Hun;Miller, Kathy Ann;Boo, Sung Min
    • ALGAE
    • /
    • v.29 no.1
    • /
    • pp.15-25
    • /
    • 2014
  • The number of species of non-native and invasive marine algae is growing, with concomitant public concern about native ecosystems and coastlines. Gelidium vagum, recently introduced from northeast Asia to Europe and North America, commonly occurs from the intertidal to subtidal zones in Korea, China, and Japan. To investigate the level of genetic diversity of native populations, we analyzed mitochondrial cox1 and cob from 108 specimens of G. vagum from Korea, China, eastern Russia, including from the Netherlands and USA. The haplotype network of individual and cox1 + cob datasets revealed no genetic structure in local populations, suggesting genetic flow between Korean populations. Our results corroborate a typical pattern of genetic diversity for introduced species, with low levels in introduced populations and high levels in native populations. All haplotypes were shared between the Netherlands and USA, but not between Korea and the Netherlands / USA except cox1. Additional sampling will identify donor populations in native northeast Asian waters. This is the first report of the utility of the mitochondrial coding cob sequences in red algae.

Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity

  • Lee, Kyung Ha;Jeong, Hae Jin;Kim, Hye Jeong;Lim, An Suk
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.139-153
    • /
    • 2017
  • The ability of a red tide species to take up nutrients is a critical factor affecting its red tide dynamics and species competition. Nutrient uptake by red tide species has been conventionally measured by incubating nutrient-depleted cells for a short period at 1 or 2 light intensities. This method may be applicable to certain conditions under which cells remain in oligotrophic water for a long time and high nutrients are suddenly introduced. Thus, a new method should be developed that can be applicable to the conditions under which cells are maintained in eutrophicated waters in healthy conditions and experience light and dark cycles and different light intensities during vertical migration. In this study, a new repletion method reflecting these conditions was developed. The nitrate uptake rates of the red tide dinoflagellate Prorocentrum micans originally maintained in nitrate repletion and depletion conditions as a function of nitrate concentration were measured. With increasing light intensity from 10 to $100{\mu}E\;m^{-2}s^{-1}$, the maximum nitrate uptake rate ($V_{max}$) of P. micans increased from 3.6 to $10.8 pM\;cell^{-1}d^{-1}$ and the half saturation constant ($K_{s-NO3}$) increased from 4.1 to $6.9{\mu}M$. At $20{\mu}E\;m^{-2}s^{-1}$, the $V_{max}$ and $K_{s-NO3}$ of P. micans originally maintained in a nitrate repletion condition were similar to those maintained in a nitrate depletion condition. Thus, differences in cells under nutrient repletion and depletion conditions may not affect $K_{s-NO3}$ and $V_{max}$. Moreover, different light intensities may cause differences in the nitrate uptake of migratory phototrophic dinoflagellates.

Assessment of the Dynamics of Microbial Community Associated with Tetraselmis suecica Culture under Different LED Lights Using Next-Generation Sequencing

  • Yang, Su-Jeong;Kim, Hyun-Woo;Choi, Seok-Gwan;Chung, Sangdeok;Oh, Seok Jin;Borkar, Shweta;Kim, Hak Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1957-1968
    • /
    • 2019
  • Tetraselmis is a green algal genus, some of whose species are important in aquaculture as well as biotechnology. In algal culture, fluorescent lamps, traditional light source for culturing algae, are now being replaced by a cost-effective light-emitting diodes (LEDs). In this study, we investigated the effect of LED light of different wavelengths (white, red, yellow, and blue) on the growth of Tetraselmis suecica and its associated microbial community structures using the next-generation sequencing (NGS). The fastest growth rate of T. suecica was shown in the red light, whereas the slowest was in yellow. The highest OTUs (3426) were identified on day 0, whereas the lowest ones (308) were found on day 15 under red light. The top 100 OTUs associated with day 0 and day 5 cultures of T. suecica under the red and yellow LED were compared. Only 26 OTUs were commonly identified among four samples. The highest numbers of unique OTUs were identified at day 0, indicating the high degree of initial microbial diversity of the T. suecica inoculum. The red light-unique OTUs occupied 34.98%, whereas the yellow-specific OTUs accounted for only 2.2%. This result suggested a higher degree of interaction in T. suecica culture under the red light, where stronger photosynthesis occurs. Apparently, the microbial community associated with T. suecica related to the oxygen produced by algal photosynthesis. This result may expand our knowledge about the algae-bacteria consortia, which would be useful for various biotechnological applications including wastewater treatment, bioremediation, and sustainable aquaculture.

A new red algal parasite, Symphyocolax koreana gen. et sp. nov. (Rhodomelaceae, Ceramiales), from Korea

  • Kim, Myung-Sook;Cho, Ga-Youn
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 2010
  • A new red algal parasite, Symphyocolax koreana M. S. Kim, gen. et sp. nov., has been found on a specimen of Symphyocladia latiuscula (Harvey) Yamada, a member of the tribe Pterosiphonieae of the Rhodomelaceae; this genus has never before been reported to host red algal parasites. Here, the new parasite from Korea is described in terms of vegetative and reproductive morphology. The thallus has a minute, colored polysiphonous upright axis with many branches attached by pseudoparenchymatous pulvinate bases. There are six pericentral cells, with many corticated cells in the lower part of the main branches. Trichoblasts occur on dioecious male and female gametophytes, but not on tetrasporophytes. Procarps develop on suprabasal cells of trichoblasts and consist of a four-celled carpogonial branch and two sterile cells attached to the supporting cell. Spermatangial branches are borne one per each successive segment on monosiphonous pedicels in spiral positions with fertile trichoblast. Tetrasporangia are formed one per segment in a straight series and are tetrahedrally divided. Features of the vegetative axes, procarp, spermatangial trichoblasts, and tetrasporangial branching show that the new genus is an alloparasite belonging to the tribe Polysiphonieae.

Discrimination of Two Red Algae Acrosorium polyneurum and A. yendoi Using Polymerase Chain Reaction Technique (유전자증폭반응 기법을 이용한 홍조류 잔금분홍잎 및 누은분홍잎의 구별)

  • KIM Long-Guo;JIN Hyung-Joo;KIM Young-Sik;PARK Jung-Youn;NAM Ki-Wan;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.585-588
    • /
    • 1997
  • The polymerase chain reaction (PCR) technique was used to distinguish from two morphologically similar red algal species; Acrosorium polyneurum and A. yendoi. Total DNA was extracted by the LiCl method. The extracted DNA (15 ng) in a $25{\mu}\ell$ reaction volume was amplified by the PCR technique using primers covering with mitochondrial D-loop gene, nuclear rDNA internal transcribed spacer (ITS), and nuclear rDNA external transcribed spacer. A. yendoi could be distinguished from A. polyneurum on the producible basis of amplified ITS fragment of 650 bp.

  • PDF

Liposoluble portion of the red alga Pyropia yezoensis protects alcohol induced liver injury in mice

  • Lee, Ji-Hyeok;Ahn, Ginne;Ko, Ju-Young;Kang, Nalae;Jung, Kyungsook;Han, Eui-Jeong;Kim, Gwang-Hoon;Kim, Hee Jeong;Choi, Cheol Soo;Jeon, You-Jin
    • ALGAE
    • /
    • v.36 no.3
    • /
    • pp.219-229
    • /
    • 2021
  • The hepatoprotective effect of liposoluble portion of Pyropia yezoensis (PYLP) was investigated against alcohol-induced liver injury in mice. Fatty acids were predominant in PYLP obtained from hexane fraction of 70% EtOH extract after ultrasonication. In particular, polyunsaturated fatty acids such as eicosapentaenoic acid and linoleic acid accounted for 56.91% of the total lipids. PYLP significantly reduced liver damage induced by the alcohol treatment in mice. PYLP treatment increased the activity of antioxidant enzymes including superoxide dismutase, catalase, and glutathion peroxidase by reducing thiobarbituric acid reactive substances. Histological observations showed that PYLP minimizes damage to living tissue induced by alcohol treatment by modulating the expression level of proteins involved in the anti-apoptotic signaling pathway. Our results suggest that PYLP, rich in polyunsaturated fatty acids extracted from the red alga P. yezoensis, will be useful as a potential liver protectant in the hangover industry.

Production of Biosugar from Red Macro-algae Eucheuma cottonii using Acid-hydrolysis (Eucheuma cottonii로부터 산 가수분해를 통한 biosugar 생산)

  • Lee, Sang-Bum;Jeong, Gwi-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.48-54
    • /
    • 2016
  • In this study, biosugar production by the red-algae Eucheuma cottonii was investigated using dilute sulfuric acid-catalyzed hydrolysis and data analysis by response surface methodology. This approach yielded 25.8 g/l total reducing sugar under the conditions of $160.1^{\circ}C$, 1% (v/v) sulfuric acid, and 13.1 min. The sugar concentration showed a linear inverse correlation with the combined severity factor (CSF) of the reaction conditions. CSF was calculated as $log(t{\cdot}e{xp}[(T_H-T_R)/14.75])-pH$, where t is the coupling reaction time, $T_H$ is the target temperature, and $T_R$ is the reference temperature ($100^{\circ}C$). In addition, levulinic acid production showed a linear positive correlation with CSF. E. cottonii may represent a useful feedstock for sugar production in the field of bioenergy.

Extracts from the Red Algae Gracilaria vermiculophylla have Antioxidant Effects in Human Bone Marrow Mesenchymal Stem Cells

  • Jeong, Sin-Gu;Lee, Jae-Joon;Kim, Ho-Tae;Ahn, Min-Ji;Son, Hee-Kyoung;Lee, Jun Sik;Oh, Won Keun;Cho, Tae Oh;Cho, Goang-Won
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • The red algae Gracilaria vermiculophylla is widely spread around seaside areas across the globe, and has been used as a food resource in Southeast Asian countries. Previous studies have shown that Gracilaria red algae extracts have beneficial antihypercholesterolemic, antioxidant, anti-inflammatory, and antimicrobial effects. In this study, we investigated the antioxidant effects of Gracilaria vermiculophylla extracts (GV-Ex) on human bone marrow mesenchymal stem cells (hBM-MSCs). The acetone and DMSO/ethanol solvents of the tested GV contain higher total flavonoid and polyphenolic contents that can strongly scavenge reactive oxygen species (ROS). Pre-treatment with GV-Ex protected hBM-MSCs against oxidative stress induced by hydrogen peroxide treatment. The protective effects of GV-Ex treatment were confirmed by MTT assay. The elevated levels of ROS in hBM-MSCs caused by hydrogen peroxide induced oxidative stress were significantly decreased by GV extract treatment. The levels of the antioxidant proteins superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and catalase (CAT) were also restored or protected by GV-Ex treatment, suggesting that GV extracts moderate excess ROS levels and prevent cells from oxidative damage.

Patterns of Interactions among Neighbor species in a High Intertidal Algal Community

  • Kim, Jeong-Ha
    • ALGAE
    • /
    • v.17 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • Three dominant rocky intertidal macroalgae, the fucoids Fucus gardneri and Pelvetiopsis limitata (Phaeophyta) and the red alga Mazzaella cornucopiae (= Iridaea cornucopiae) on the west coast of Vancouver Island, British Columbia, Canada were used in a series of field experiments to examine interspecific interactions. These experiments showed complex patterns which included an interchange of negative (inhibition) and positive (facilitation) interactions depending on neighbor distance. Less fucoid recruitment occurred in the plots with greater percent cover of a turfforming red alga, M. cornucopiae. However, experimentally removing Mazzaella turf (the turf was considered to be "blocking" fucoid recruits or "shading" growing recruits) did not increase recruitment. This result indicated that there may be another factor(s) involved in the survivorship of juvenile fucoids in the turf-removed plots. Morphological differences in adult plants between Mazzaella and the two fucoids resulted in another type of interaction; these began when fucoids successfully settled and grew nearby or within the red algal turf. By monitoring microhabitat at the individual plant level for two years, I found that survivorship of fucoid recruits showed different species-specific patterns. The patterns also varied as the microhabitat changed from Mazzaella turf edge to open space. For F. gardneri, longevity of P.limitata at all distances tested was similar. A reason for greater longevity of F. gardneri individuals at edge microhabitats may be that these sites have one side open to light and nutrients and another site that buffers them from desiccation and wave impact. In the Mazzaella-Fucus interaction, neighbor distance was a key factor in determining whether the outcome of the interaction would be competition or facilitation (or protection). This study provides experimental evidence that detectable biological interactions occur in this upper intertidal algal community where physical conditions are usually severe, and also indicates the importance of small scale examination in understanding macroalgal interactions in intertidal habitats.

Overexpression of the Small Heat Shock Protein, PtsHSP19.3 from Marine Red Algae, Pyropia tenera (Bangiales, Rhodophyta) Enhances Abiotic Stress Tolerance in Chlamydomonas

  • Jin, Yujin;Yang, Sungwhan;Im, Sungoh;Jeong, Won-Joong;Park, EunJeong;Choi, Dong-Woog
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • Water temperature is one of the major factors that impacts the growth and life cycle of Pyropia tenera, one of the most valuable and cultivated marine red algae belonging to Bangiales (Rhodophytes). We analyzed transcriptome from gametophyte of P. tenera under normal and high temperature conditions, and identified four small heat shock proteins (sHSPs). They have no significant amino acid sequence homology with known proteins in public databases except PhsHSP22 from Pyropia haitanensis. PtsHSP19.3 gene responded to high temperature but slightly or not to desiccation, freezing or high salt condition. When the PtsHSP19.3 gene was overexpressed in Chlamydomonas reinhardtii, transformed Chlamydomonas lines revealed much higher growth rate than that of control cells under heat stress condition. Transformed cells also grew well in those of the control cell onto the medium containing high salt or $H_2O_2$. When the PtsHSP19.3 was fused to GFP and introduced into tobacco protoplast, fluorescence was detected at several spots. Results indicate that PtsHSP19.3 may form super-molecular assembles and be involved in tolerance to heat stress.