Browse > Article
http://dx.doi.org/10.4014/mbl.1512.12006

Production of Biosugar from Red Macro-algae Eucheuma cottonii using Acid-hydrolysis  

Lee, Sang-Bum (Department of Biotechnology, Pukyong National University)
Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.1, 2016 , pp. 48-54 More about this Journal
Abstract
In this study, biosugar production by the red-algae Eucheuma cottonii was investigated using dilute sulfuric acid-catalyzed hydrolysis and data analysis by response surface methodology. This approach yielded 25.8 g/l total reducing sugar under the conditions of $160.1^{\circ}C$, 1% (v/v) sulfuric acid, and 13.1 min. The sugar concentration showed a linear inverse correlation with the combined severity factor (CSF) of the reaction conditions. CSF was calculated as $log(t{\cdot}e{xp}[(T_H-T_R)/14.75])-pH$, where t is the coupling reaction time, $T_H$ is the target temperature, and $T_R$ is the reference temperature ($100^{\circ}C$). In addition, levulinic acid production showed a linear positive correlation with CSF. E. cottonii may represent a useful feedstock for sugar production in the field of bioenergy.
Keywords
Eucheuma cottonii; red-macro algae; biosugar; acid hydrolysis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Banerji A, Balakrishnan M, Kishore VVN. 2013. Low severity dilute-acid hydrolysis of sweet sorghum bagasse. Appl. Energy 104: 197−206.   DOI
2 Demibras A. 2007. Progress and recent trends in biofuels. Progress in Energy Combustion Science 33: 1−18.   DOI
3 Doopedia. 2016. Carrageenan. Available from http://www.doopedia.co.kr/doopedia/master/. Accessed Mar. 9, 2016.
4 Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH. 2006. The biofine process - Production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, pp. 139−164. In: B. Kamm, P. R. Gruber, M. Kamm (eds.). Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
5 Jeong GT, Park DH. 2014. Effect of pretreatment method on lipid extraction from Enteromorpha intestinalis. KSBB J. 29: 22−28.   DOI
6 Kim DH, Lee SB, Jeong GT. 2014. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour. Technol. 161: 348−353.   DOI
7 Jeong GT. 2014. Production of total reducing sugar and levulinic acid from brown macro-algae Sargassum fulvellum. Korean J. Microbiol. Biotechnol. 42: 177−183.   DOI
8 Jeong GT, Kim SK, Park DH. 2015. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars. Bioresour. Technol. 181: 1−6.   DOI
9 Jeong GT, Park DH. 2015. Optimization of lipid extraction from marine green macro-algae as biofuel resources. Korean J. Chem. Eng. 32: 2463−2467.   DOI
10 Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. 2012. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24: 857−862.   DOI
11 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426−428.   DOI
12 Park SH, Park JH, Gobikrishnan S, Jeong GT, Park DH. 2015. Biodiesel production from palm oil using a non-catalyzed supercritical process. Korean J. Chem. Eng. 32: 2290−2294.   DOI