Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.5.20

Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity  

Lee, Kyung Ha (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Kim, Hye Jeong (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Lim, An Suk (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Publication Information
ALGAE / v.32, no.2, 2017 , pp. 139-153 More about this Journal
Abstract
The ability of a red tide species to take up nutrients is a critical factor affecting its red tide dynamics and species competition. Nutrient uptake by red tide species has been conventionally measured by incubating nutrient-depleted cells for a short period at 1 or 2 light intensities. This method may be applicable to certain conditions under which cells remain in oligotrophic water for a long time and high nutrients are suddenly introduced. Thus, a new method should be developed that can be applicable to the conditions under which cells are maintained in eutrophicated waters in healthy conditions and experience light and dark cycles and different light intensities during vertical migration. In this study, a new repletion method reflecting these conditions was developed. The nitrate uptake rates of the red tide dinoflagellate Prorocentrum micans originally maintained in nitrate repletion and depletion conditions as a function of nitrate concentration were measured. With increasing light intensity from 10 to $100{\mu}E\;m^{-2}s^{-1}$, the maximum nitrate uptake rate ($V_{max}$) of P. micans increased from 3.6 to $10.8 pM\;cell^{-1}d^{-1}$ and the half saturation constant ($K_{s-NO3}$) increased from 4.1 to $6.9{\mu}M$. At $20{\mu}E\;m^{-2}s^{-1}$, the $V_{max}$ and $K_{s-NO3}$ of P. micans originally maintained in a nitrate repletion condition were similar to those maintained in a nitrate depletion condition. Thus, differences in cells under nutrient repletion and depletion conditions may not affect $K_{s-NO3}$ and $V_{max}$. Moreover, different light intensities may cause differences in the nitrate uptake of migratory phototrophic dinoflagellates.
Keywords
dinoflagellate; half saturation constant; harmful algal bloom; nitrate; nutrient; red tide; uptake rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Glibert, P. M., Icarus Allen, J., Artioli, Y., Beusen, A., Bouwman, L., Harle, J., Holmes, R. & Holt, J. 2014. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob. Chang. Biol. 20:3845-3858.   DOI
2 Guillard, R. R. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chanley, M. H. (Eds.) Culture of Marine Invertebrate Animals. Springer, New York, pp. 29-60.
3 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
4 Hasle, G. R. 1950. Phototactic vertical migration in marine dinoflagellates. Oikos 2:162-175.   DOI
5 Herndon, J. & Cochlan, W. P. 2007. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6:260-270.   DOI
6 Hu, H., Zhang, J. & Chen, W. 2011. Competition of bloom-forming marine phytoplankton at low nutrient concentrations. J. Environ. Sci. 23:656-663.   DOI
7 Hu, Z., Duan, S., Xu, N. & Mulholland, M. R. 2014. Growth and nitrogen uptake kinetics in cultured Prorocentrum donghaiense. PLoS ONE 9:e94030.   DOI
8 Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.   DOI
9 Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88.   DOI
10 Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005. Feeding by the phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-155.   DOI
11 Ji, R. & Franks, P. J. 2007. Vertical migration of dinoflagellates: model analysis of strategies, growth, and vertical distribution patterns. Mar. Ecol. Prog. Ser. 344:49-61.   DOI
12 Ji, X., Han, X., Zheng, L., Yang, B., Yu, Z. & Zou, J. 2011. Allelopathic interactions between Prorocentrum micans and Skeletonema costatum or Karenia mikimotoi in laboratory cultures. Chin. J. Oceanol. Limnol. 29:840-848.   DOI
13 Kang, N. S., Lee, K. H., Jeong, H. J., Yoo, Y. D., Seong, K. A., Potvin, E., Hwang, Y. J. & Yoon, E. Y. 2013. Red tides in Shiwha Bay, western Korea: a huge dike and tidal power plant established in a semi-enclosed embayment system. Harmful Algae 30(Suppl. 1):S114-S130.   DOI
14 Killberg-Thoreson, L., Mulholland, M. R., Heil, C. A., Sanderson, M. P., O'Neil, J. M. & Bronk, D. A. 2014. Nitrogen uptake kinetics in field populations and cultured strains of Karenia brevis. Harmful Algae 38:73-85.   DOI
15 Kudela, R. M. & Cochlan, W. P. 2000. Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California. Aquat. Microb. Ecol. 21:31-47.   DOI
16 Kudela, R. M., Lane, J. Q. & Cochlan, W. P. 2008a. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae 8:103-110.   DOI
17 Li, J., Glibert, P. M. & Zhou, M. 2010. Temporal and spatial variability in nitrogen uptake kinetics during harmful dinoflagellate blooms in the East China Sea. Harmful Algae 9:531-539.   DOI
18 Kudela, R. M., Ryan, J. P., Blakely, M. D., Lane, J. Q. & Peterson, T. D. 2008b. Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7:278-292.   DOI
19 Kudela, R. M., Seeyave, S. & Cochlan, W. P. 2010. The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog. Oceanogr. 85:122-135.   DOI
20 Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81.   DOI
21 Lim, A. S., Jeong, H. J., Jang, T. Y., Jang, S. H. & Franks, P. J. S. 2014. Inhibition of growth rate and swimming speed of the harmful dinoflagellate Cochlodinium polykrikoides by diatoms: implications for red tide formation. Harmful Algae 37:53-61.   DOI
22 Lomas, M. W. & Glibert, P. M. 2000. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. J. Phycol. 36:903-913.   DOI
23 MacIsaac, J. J., Grunseich, G. S., Glober, H. E. & Yentsch, C. M. 1979. Light and nutrient limitation in Gonyaulax excavata: nitrogen and carbon trace results. In Taylor, D. L. & Selige, H. H. (Eds.) Toxic Dinoflagellate Blooms. Elsevier, New York, pp. 107-110.
24 Maguer, J. -F., L'Helguen, S., Madec, C., Labry, C. & Le Corre, P. 2007. Nitrogen uptake and assimilation kinetics in Alexandrium minutum (Dynophyceae): effect of N-limited growth rate on nitrate and ammonium interactions. J. Phycol. 43:295-303.   DOI
25 Suzuki, L. & Johnson, C. H. 2001. Algae know the time of day: circadian and photoperiodic programs. J. Phycol. 37:933-942.   DOI
26 Shankle, A. M., Mayali, X. & Franks, P. J. S. 2004. Temporal patterns in population genetic diversity of Prorocentrum micans (Dinophyceae). J. Phycol. 40:239-247.   DOI
27 Shumway, S. E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquac. Soc. 21:65-104.   DOI
28 Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153.   DOI
29 Uchida, T. 1981. The relationships between Prorocentrum micans-growth and its ecological environment. Sci. Pap. Inst. Algol. Res. Fac. Sci. Hokkaido Univ. 7:17-76.
30 Van Dolah, F. M., Lidie, K. B., Morey, J. S., Brunelle, S. A., Ryan, J. C., Monroe, E. A. & Haynes, B. L. 2007. Microarray analysis of diurnal- and circadian-regulated genes in the Florida red-tide dinoflagellate Karenia brevis (Dinophyceae). J. Phycol. 43:741-752.   DOI
31 Yamamoto, T., Oh, S. J. & Kataoka, Y. 2004. Growth and uptake kinetics for nitrate, ammonium and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay, Japan. Fish. Sci. 70:108-115.   DOI
32 Zheng-fang, W., Qing, Z. & Min, G. 1995. The effects of nitrogen, phosphorus, vitamins and trace metals on the growth of the red tide organism Prorocentrum micans. Chin. J. Oceanol. Limnol. 13:338-342.   DOI
33 Pena-Manjarrez, J. L., Helenes, J., Gaxiola-Castro, G. & Orellana-Cepeda, E. 2005. Dinoflagellate cysts and bloom events at Todos Santos Bay, Baja California, Mexico, 1999-2000. Cont. Shelf Res. 25:1375-1393.   DOI
34 Nakamura, Y. & Watanabe, M. M. 1983. Nitrate and phosphate uptake kinetics of Chattonella antiqua grown in light/dark cycles. J. Oceanogr. Soc. Jpn. 39:167-170.   DOI
35 Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013a. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40.   DOI
36 Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013b. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143.   DOI
37 Pybus, C. 1990. Blooms of Prorocentrum micans (Dinophyta) in the Galway Bay area. J. Mar. Biol. Assoc. U. K. 70:697-705.   DOI
38 Qi, Y. Z. & Zhu, C. J. 1994. A comparative study of nitrate uptake kinetics by two red tide causative algae. Asian Mar. Biol. 11:103-106.
39 Seeyave, S., Probyn, T. A., Pitcher, G. C., Lucas, M. I. & Purdie, D. A. 2009. Nitrogen nutrition in assemblages dominated by Pseudo-nitzschia spp., Alexandrium catenella and Dinophysis acuminata off the west coast of South Africa. Mar. Ecol. Prog. Ser. 379:91-107.   DOI
40 Sinclair, G., Kamykowski, D. & Glibert, P. M. 2009. Growth, uptake, and assimilation of ammonium, nitrate, and urea, by three strains of Karenia brevis grown under low light. Harmful Algae 8:770-780.   DOI
41 Sinclair, G. A., Kamykowski, D., Milligan, E. & Schaeffer, B. 2006. Nitrate uptake by Karenia brevis. I. Influences of prior environmental exposure and biochemical state on diel uptake of nitrate. Mar. Ecol. Prog. Ser. 328:117-124.   DOI
42 Collos, Y., Gagne, C., Laabir, M., Vaquer, A., Cecchi, P. & Souchu, P. 2004. Nitrogenous nutrition of Alexandrium catenella (Dinophyceae) in cultures and in Thau laggon, Southern France. J. Phycol. 40:96-103.   DOI
43 Allen, W. E. 1941. Twenty years' statistical studies of marine plankton dinoflagellates of southern California. Am. Midl. Nat. 26:603-635.   DOI
44 Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E. & Montresor, M. 2012. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10-35.   DOI
45 Anderson, D. M., Glibert, P. M. & Burkholder, J. M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704-726.   DOI
46 Carpenter, E. J. & Guillard, R. R. L. 1971. Intraspecific differences in nitrate half-saturation constants for three species of marine phytoplankton. Ecology 52:183-185.   DOI
47 Cochlan, W. P. & Harrison, P. J. 1991. Kinetics of nitrogen (nitrate, ammonium and urea) uptake by the picoflagellate Micromonas pusilla (Prasinophyceae). J. Exp. Mar. Biol. Ecol. 153:129-141.   DOI
48 Eppley, R. W. 1973. Nitrate uptake. In Stein, J. R., Hellebust, J. A. & Craigie, J. S. (Eds.) Handbook of Phycological Methods: Physiological and Biochemical Methods. Vol. 2. Cambridge University Press, Cambridge, pp. 401-409.
49 Cullen, J. J. & Horrigan, S. G. 1981. Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and the photosynthetic capacity of the dinoflagellate Gymnodinium splendens. Mar. Biol. 62:81-89.   DOI
50 Dortch, Q., Thompson, P. A. & Harrison, P. J. 1991. Variability in nitrate uptake kinetics in Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 27:35-39.   DOI
51 Fan, C., Glibert, P. M. & Burkholder, J. M. 2003. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures. Harmful Algae 2:283-299.   DOI
52 Eppley, R. W. & Coatsworth, J. L. 1968. Uptake of nitrate and nitrite by Ditylum brightwellii-kinetics and mechanisms. J. Phycol. 4:151-156.   DOI
53 Eppley, R. W., Rogers, J. N. & McCarthy, J. J. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14:912-920.   DOI
54 Eppley, R. W. & Thomas, W. H. 1969. Comparison of half-saturation constants for growth and nitrate uptake of marine phytoplankton. J. Phycol. 5:375-379.   DOI
55 Fu, F. X., Tatters, A. O. & Hutchins, D. A. 2012. Global change and the future of harmful algal blooms in the ocean. Mar. Ecol. Prog. Ser. 470:207-233.   DOI
56 Glibert, P. M., Burkholder, J. M. & Kana, T. M. 2012. Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae 14:231-259.   DOI