Nowadays Hyperbolic Navigation System-LORAN, DECCA, OMEGA, OMEGA-is available on the ocean, and Spherical Navigation System, GPS (Global Positioning System) is operated partially. Hyperbolic Navigation System has the blind area near the base line extention because divergence rate of hyperbola is infinite theoretically. The Position Accuracy is differ from the cross angle of LOP although each LOP has the same error of quantity. GDOP(Geometric Dilution of Precisoin) is used to estimate the position accuracy according to the cross angle of LOP and LOP error. Hyperbola and ellipse are crossed at right angle everywhere. Hyperbola and ellipse are used to LOP in Rectangular Navigation System. The equation calculating the GDOP of rectangular Navigation System is induced and GDOP diagram is completed in this paper. A scheme that can improve the position accuracy in the blind area of Hyperboic Navigation System using the Rectangular Navigation System is proposed through the computer simulation.
In this study, a comprehensive laboratory experimental programme was conducted on expansive soil with a high swelling potential to study the influence of different additive materials on swelling pressure and index properties. Lime, sand, multifilament fiber and fibrillated fiber were used for stabilization of expansive soil. Lime, sand and fibers were respectively added to the expansive soil at 0-7%, 0-80%, 0-0.5%. On each mixture that was prepared by the proportions mentioned above, Atterberg limits, compaction, and swelling pressure tests were conducted. From the result of these experiments, the swelling pressure-time relation could be replaced by a rectangular hyperbola established to facilitate the prediction of ultimate percent swelling with a few initial data points. The best type of additive and its optimum ratio for engineering purposes could be estimated rapidly by this approach.
작물의 생산량은 광합성과 밀접한 관계가 있으며, 광합성 속도는 다양한 환경 요인에 의해 변화한다. 광합성 속도는 작물의 생육 상태나 생육 속도를 판단하는 지표로 사용되며, 작물 재배 시설을 구축하는 데 고려해야 하는 중요한 요인이다. 이 연구의 목적은 광도, $CO_2$ 농도 및 생육 단계에 의해 변화하는 로메인 상추의 군락 광합성 속도 모델을 개발하는 것이다. 군락 광합성 속도는 정식 후 5, 10, 15, 20 일차에서 5단계의 $CO_2$ 농도($600-2,200{\mu}mol{\cdot}mol^{-1}$)와 5단계의 광조건($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)이 처리된 3개의 밀폐 아크릴 챔버($1.0{\times}0.8{\times}0.5m$) 내에서 측정하였다. 먼저 세 가지 환경 요인을 사용하는 식들을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과, 단순곱 모델의 $R^2$는 0.923이었으며, 수정 직각쌍곡선 모델의 $R^2$는 0.941을 나타내었다. 따라서 수정 직각쌍곡선 모델이 광도, $CO_2$ 농도, 생육 단계의 3 변수에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 것으로 판단하였다. 본 연구에서 개발된 군락 광합성 모델은 식물공장에서 상추 재배를 위해 생육 단계별로 설정해야 할 최적의 광도와 $CO_2$ 농도를 결정하는 데 도움이 될 것으로 생각된다.
광도와 온도 같은 환경 요인에 의해 광합성 속도가 변화하기도 하며, 생육 시기에 따른 광합성 효율의 변화가 수반되기도 한다. 본 연구에서는 흑로메인 상추(Lactuca sativa L., Asia Heuk romaine)를 이용하여 광도와 온도, 생육 시기에 따른 군락 광합성 속도를 표현하는 두 모델을 구축하고 비교하는 것을 목표로 하였다. 군락 광합성은 정식 후 4, 7, 14, 21, 28 일차 상추를 아크릴 챔버($1.0{\times}0.8{\times}0.5m$)에 넣어 측정하였으며, 이 때 챔버 내부의 온도는 $19^{\circ}C$에서 $28^{\circ}C$까지 변화시켰고 광원은 LED를 이용하여 50에서 $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$까지 변화시키며 실험하였다. 챔버 내부의 초기 이산화탄소 농도는 $2,000{\mu}mol{\cdot}mol^{-1}$로 설정하였으며, 시간에 따른 이산화탄소 농도의 변화율을 이용하여 군락 광합성 속도를 계산하였다. 각 환경요인을 표현하는 3개 식을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 온도와 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정된 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과 단순곱 모델은 0.849의 $R^2$ 값을 나타내었으며, 수정된 직각쌍곡선 모델은 0.861의 $R^2$ 값을 나타내었다. 수정된 직각쌍곡선 모델이 단순곱 모델에 비해 환경 요인(광도, 온도), 생육 요인(생육 시기)에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 모델인 것으로 판단하였다.
In this paper, we investigate the proper shape and location of the maximum curve of transcendental entire functions $e^{az^2+bz+c}$. We show that the alpha curve of $e^{az^2+bz+c}$ is a subset of a rectangular hyperbola, and the maximum curve is the connected set originating from the origin as a subset of the alpha curve.
A new computational program, which is based on the CIP/CCUP(Constraint Interpolation Profile/CIP Combined Unified Procedure) method, has been developed to numerically analyse sloshing phenomena dealt as multiphase-flow problems. For the convection terms of Navier-Stokes equations, the RCIP(Rational function CIP) method was adopted and the THINC-WLIC(Tangent of Hyperbola for Interface Capturing-Weighted Line Interface Calculation) method was used to capture the air/water interface. To validate the present numerical method, two-dimensional dam-breaking and sloshing problems in a rectangular tank were solved by the developed method in a stationary Cartesian grid system. In the case of sloshing problems, simulations by using a improved MPS(Moving Particle Simulation) method, which is named as PNU-MPS(Pusan National University-MPS), were also carried out. The computational results are compared with those of experiments and most of the comparisons are reasonably good.
In this study, the impact loads on tank walls by sloshing phenomena and on a tall structure in a three-dimensional rectangular tank were predicted using multiphase flow simulations. The solver was based on the CIP/CCUP (Constraint interpolation CIP/CIP combined unified procedure) method, and the THINC-WLIC (Tangent hyperbola for interface capturing-weighted line interface calculation) scheme was used to capture the air-water interface. For the convection terms of the Navier-Stokes equations, the USCIP (Unsplit semi-lagrangian CIP) method was adopted. The results of simulations were compared with those of experiments. Overall, the comparisons were reasonably good.
본 시험은 2008년에 경상북도 농업기술원 벼 재배포장에서 최근 담수직파답에서 제초제 저항성 잡초로 가장 문제시 되고 있는 잡초 중 올챙이고랭이를 대상으로 잡초 밀도별 벼와의 경합력을 구명하고 Rectangular hyperbola 모델을 기초로 잡초의 밀도에 따른 쌀 수량 감소를 예측하여 경제적인 방제 필요수준을 구명하고자 실시하였다. 잡초를 완전 방제 했을 경우를 가상한 벼 수량은 올챙이고랭이에서 10a당 466kg으로 피의 457kg보다 다소 높았으며, 벼와 잡초의 경합력은 올챙이고랭이에서 0.00188로 피의 0.02402 보다 낮았고, 수량 예측식은 올챙이고랭이가 y = 466/(1+0.00188x), $R^2$ = 0.933, 피가 y = 458/(1+0.02402x), $R^2$ = 0.973로 나타났다. 제초제 구입 비용을 10a당 12,492원, 제초제 살포 인건비를 9,936원, 쌀의 가격을 kg당 2,000원, 제초제 방제가 95%로 적용하여 구한 경제적 피해 한계 밀도는 잡초 완전 방제시 수량이 10a당 466kg이고 잡초 1본당 수량 감수정도가 0.001884인 올챙이고랭이는 평방미터당 13.4본, 잡초 완전 방제시 수량이 458kg이고 잡초 1본당 수량 감수 정도가 0.02402인 피는 평방미터당 1.07본이었다.
본 연구는 벼에 대한 물달개비, 벗풀의 경합에 따른 수량피해 예측과 경제적인 잡초관리를 위한 방제필요밀도를 구명하고자 하였다. 수원, 익산, 나주와 대전지역에서 얻어진 성적을 종합한 예측모델식에 따르면 논에서 물달개비의 경합력은 대전 0.0007445, 수원 0.0005713, 익산 0.000988, 나주에서 0.0008846으로 추정되었다. 벗풀의 경합력은 나주 0.001611에서 익산에서 0.002437의 범위를 보였다. 초종별 평방미터당 요방제 필요밀도는 물달개비는 중기제초제 처리시 22에서 39본으로, 벗풀은 8.8본에서 12.9본으로 추정되었다.
작물 생육 모델은 작물의 생육을 이해하고 통합하기 위해 유용한 도구이다. 완전제어형 식물공장에서 엽채류로 활용하기 위한 퀴노아(Chenopodium quinoa Willd.)의 초장, 광합성률, 생장 모델을 예측하기 위한 모델을 1차식, 2차식 및 비선형 및 선형지수 등식을 사용하여 개발하였다. 식물 생육과 수량은 정식 후 5일간격으로 측정하였다. 광합성과 생장 곡선 모델을 계산하였다. 초장과 정식 후 일수(DAT)간의 선형 및 곡선 관계를 얻었으나, 초장을 정확하게 예측하기 위한 모델은 선형 등식이었다. 광합성률 모델을 비선형 등식을 선택하였다. 광보상점, 광포화점, 및 호흡률은 각각 29, 813 and $3.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$였다. 지상부 생체중과 건물중은 선형관계를 보였다. 지상부 건물중의 회귀계수는 0.75 ($R^2=0.921^{***}$)였다. 선형지수 수식을 사용하여 시간 함수에 따른 퀴노아의 지상부 건물중 증가를 비선형 회귀식으로 수행하였다. 작물생장률과 상대생장률은 각각 $22.9g{\cdot}m^{-2}{\cdot}d^{-1}$ and $0.28g{\cdot}g^{-1}{\cdot}d^{-1}$였다. 이러한 모델들은 정확하게 퀴노아의 초장, 광합성률, 지상부 생체중과 건물중을 예측할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.