• 제목/요약/키워드: recombinant DNA technology

검색결과 163건 처리시간 0.027초

Expression of the Galactokinase Gene (gaIK) from Lactococcus lactis asp. lactis ATCC7962 in Escherichia coil

  • Lee, Hyong-Joo;Lee, Jung-Min;Park, Jae-Yeon;Lee, Jong-Hoon;Kim, Jeong-Hwon;Chang, Hea-Choon;Chung, Dae-Kyun;Kim, Somi-Cho
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.156-160
    • /
    • 2002
  • The whole gal/lae operon genes of Lactococcus lactis ssp. lactis 7962 were reported as follows: galA-galM-galK-galT-lacA -lacZ-galE. The galK gene encoding a galactokinase involved in one of the Leloir pathways for galactose metabolism was found to be 1,197 bp in length and encodes a protein of 43,822 Da calculated molecular mass. The deduced amino acid sequence showed over 50% homology with GaIK proteins from several other lactic acid bacteria. The galK gene was expressed in E. coli and the product was identified as a 43 kDa protein which corresponds to the estimated size from the DNA sequence. The galactokinase activity of recombinant 5. coli was about 8 times greater against that of the host strain and more than 3 times higher than the induced L. lactis 7962.

인체 락토페린 생산 형질전환 가시오갈피 배양세포 (Transgenic Siberian Ginseng Cultured Cells That Produce High Levels of Human Lactoferrin)

  • 조승현;권석윤;김재훈;이기택;곽상수;이행순
    • Journal of Plant Biotechnology
    • /
    • 제32권3호
    • /
    • pp.209-215
    • /
    • 2005
  • 락토페린은 철 결합 당단백질로서 항 미생물활성과 면역강화와 같은 생리활성 기능을 가지고 있다. 본 연구는 배양 세포 고 발현 SWPA2 promoter를 이용하여 인체락토페린(hLf)을 생산하는 형질전환 가시오갈피 배양세포주 개발에 관한 것이다. 형질전환에 이용된 벡터는 산화스트레스 유도성 SWPA2 promoter의 조절 하에서 hLf이 소포체로 targeting되도록 제작된 SWPA2pro::ER-hLf/pCAMBIA이다. hLf을 생산하는 각 형질전환 배양세포들은 PCR과 Southern분석을 통해 hLf 유전자가 가시오갈피 게놈내로 성공적으로 도입되었음을 확인하였으며, western blot과 ELISA를 통해 형질전환 가시오갈피 배양 세포주에서 hLf 단백질이 활성이 있음을 확인하였다. 형질전환 가시오갈피 배양세포에서 hLf 단백질의 함량은 세포배양이 진행될수록 증가하여 정지기 때 가장 높았으며 전체 수용성 단백질의 약 3%를 차지하였다. 따라서 본 연구에서 개발된 인체락토페린을 고생산하는 약용식물 가시오갈피 배양 세포주는 산업적으로 이용될 수 있을 것으로 기대된다.

누에배양세포에서 인간형 재조합단백질 각질세포 성장인자 생산 (Production of Recombinant Human Keratinocyte Growth Factor from Bombyx mori (Lepidopera: Bombycidae) Bm5 Cells)

  • 한송이;진초이;권기상;윤은영;구태원;김승환;최종순;유권;권오유
    • 생명과학회지
    • /
    • 제21권6호
    • /
    • pp.907-911
    • /
    • 2011
  • 인간형 재조합단백질 각질세포 성장인자를 안정적으로 생산하는 누에 배양 세포(Bm5-hKGF cell)을 만들었다. 이 세포에서 분비되어 배지에 포함된 양은 15-20 ng/ml 정도였다. Bm5-hKGF cell에 누에의 PDI를 함께 발현시키면 세포외 분비량이 2배 증가하였다. Wound healing migration assay 결과 누에세포에서 생산된 인간형 재조합단백질 각질세포 성장인자는 세포생장을 촉진하는 활성을 가지고 있었다. 본 실험의 결과는 누에배양세포를 사용하여 저비용으로 양질의 인간형 재조합단백질을 대량생산 할 수 있는 것을 기대한다.

Cloning, Expression, and Characterization of Endoglucanase Gene egIV from Trichoderma viride AS 3.3711

  • Huang, Xiaomei;Fan, Jinxia;Yang, Qian;Chen, Xiuling;Liu, Zhihua;Wang, Yun;Wang, Daqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.390-399
    • /
    • 2012
  • Endoglucanase gene egIV was cloned from Trichoderma viride AS 3.3711, an important cellulose-producing fungus, by using an RT-PCR protocol. The egIV cDNA is 1,297 bp in length and contains a 1,035 bp open reading frame encoding a 344 amino acid protein with an estimated molecular mass of 35.5 kDa and isoelectronic point (pI) of 5.29. The expression of gene egIV in T. viride AS 3.3711 could be induced by sucrose, corn straw, carboxymethylcellulose (CMC), or microcrystalline cellulose, but especially by CMC. The transcripts of egIV were regulated under these substrates, but the expression level of the egIV gene could be inhibited by glucose and fructose. Three recombinant vectors, pYES2-xegIV, $pYES2M{\alpha}$-egIV, and $pYES2M{\alpha}$-xegIV, were constructed to express the egIV gene in Saccharomyces cerevisiae H158. The CMCase activity of yeast transformants $IpYES2M{\alpha}$-xegIV was higher than that of transformant IpYES2-xegIV or $IpYES2M{\alpha}$-egIV, with the highest activity of 0.13 U/ml at induction for 48 h, illustrating that the modified egIV gene could enhance CMCase activity and that $MF{\alpha}$ signal peptide from S. cerevisiae could regulate exogenous gene expression more effectively in S. cerevisiae. The recombinant EGIV enzyme was stable at pH 3.5 to 7.5 and temperature of $35^{\circ}C$ to $65^{\circ}C$. The optimal reaction condition for EGIV enzyme activity was at the temperature of $55^{\circ}C$, pH of 5.0, 0.75 mM $Ba^{2+}$, and using CMC as substrate. Under these conditions, the highest activity of EGIV enzyme in transformant $IpYES2M{\alpha}$-xegIV was 0.18 U/ml. These properties would provide technical parameters for utilizing cellulose in industrial bioethanol production.

Microbial Biotechnology Powered by Genomics, Proteomics, Metabolomics and Bioinformatics

  • Lee, Sang-Yup
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.13-16
    • /
    • 2000
  • Microorganisms have been widely employed for the production of useful bioproducts including primary metabolites such as ethanol, succinic acid, acetone and butanol, secondary metabolites represented by antibiotics, proteins, polysaccharides, lipids and many others. Since these products can be obtained in small quantities under natural condition, mutation and selection processes have been employed for the improvement of strains. Recently, metabolic engineering strategies have been employed for more efficient production of these bioproducts. Metabolic engineering can be defined as purposeful modification of cellular metabolic pathways by introducing new pathways, deleting or modifying the existing pathways for the enhanced production of a desired product or modified/new product, degradation of xenobiotics, and utilization of inexpensive raw materials. Metabolic flux analysis and metabolic control analysis along with recombinant DNA techniques are three important components in designing optimized metabolic pathways, This powerful technology is being further improved by the genomics, proteomics, metabolomics and bioinformatics. Complete genome sequences are providing us with the possibility of addressing complex biological questions including metabolic control, regulation and flux. In silico analysis of microbial metabolic pathways is possible from the completed genome sequences. Transcriptome analysis by employing ONA chip allows us to examine the global pattern of gene expression at mRNA level. Two dimensional gel electrophoresis of cellular proteins can be used to examine the global proteome content, which provides us with the information on gene expression at protein level. Bioinformatics can help us to understand the results obtained with these new techniques, and further provides us with a wide range of information contained in the genome sequences. The strategies taken in our lab for the production of pharmaceutical proteins, polyhydroxyalkanoate (a family of completely biodegradable polymer), succinic acid and me chemicals by employing metabolic engineering powered by genomics, proteomics, metabolomics and bioinformatics will be presented.

  • PDF

Isolation, Characterization, and Molecular Cloning of the cDNA Encoding a Novel Phytase from Aspergillus niger 113 and High Expression in Pichia pastoris

  • Xiong, Ai Sheng;Yao, Quan-Hong;Peng, Ri-He;Li, Xian;Fan, Hui-Qin;Guo, Mei-Jin;Zhang, Si-Liang
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.282-291
    • /
    • 2004
  • Phytases catalyze the release of phosphate from phytic acid. Phytase-producing microorganisms were selected by culturing the soil extracts on agar plates containing phytic acid. Two hundred colonies that exhibited potential phytase activity were selected for further study. The colony showing the highest phytase activity was identified as Aspergillus niger and designated strain 113. The phytase gene from A. niger 113 (phyI1) was isolated, cloned, and characterized. The nucleotide and deduced amino acid sequence identity between phyI1 and phyA from NRRL3135 were 90% and 98%, respectively. The identity between phyI1 and phyA from SK-57 was 89% and 96%. A synthetic phytase gene, phyI1s, was synthesized by successive PCR and transformed into the yeast expression vector carrying a signal peptide that was designed and synthesized using P. pastoris biased codon. For the phytase expression and secretion, the construct was integrated into the genome of P. pastoris by homologous recombination. Over-expressing strains were selected and fermented. It was discovered that ~4.2 g phytase could be purified from one liter of culture fluid. The activity of the resulting phytase was 9.5 U/mg. Due to the heavy glycosylation, the expressed phytase varied in size (120, 95, 85, and 64 kDa), but could be deglycosylated to a homogeneous 64 kDa species. An enzymatic kinetics analysis showed that the phytase had two pH optima (pH 2.0 and pH 5.0) and an optimum temperature of $60^{\circ}C$.

Production of Knockout Mice using CRISPR/Cas9 in FVB Strain

  • Bae, Hee Sook;Lee, Soo Jin;Koo, Ok Jae
    • 한국수정란이식학회지
    • /
    • 제30권4호
    • /
    • pp.299-303
    • /
    • 2015
  • KO mice provide an excellent tool to determine roles of specific genes in biomedical filed. Traditionally, knockout mice were generated by homologous recombination in embryonic stem cells. Recently, engineered nucleases, such as zinc finger nuclease, transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR), were used to produce knockout mice. This new technology is useful because of high efficiency and ability to generate biallelic mutation in founder mice. Until now, most of knockout mice produced using engineered nucleases were C57BL/6 strain. In the present study we used CRISPR-Cas9 system to generate knockout mice in FVB strain. We designed and synthesized single guide RNA (sgRNA) of CRISPR system for targeting gene, Abtb2. Mouse zygote were obtained from superovulated FVB female mice at 8-10 weeks of age. The sgRNA was injected into pronuclear of the mouse zygote with recombinant Cas9 protein. The microinjected zygotes were cultured for an additional day and only cleaved embryos were selected. The selected embryos were surgically transferred to oviduct of surrogate mother and offsprings were obtained. Genomic DNA were isolated from the offsprings and the target sequence was amplified using PCR. In T7E1 assay, 46.7% among the offsprings were founded as mutants. The PCR products were purified and sequences were analyzed. Most of the mutations were founded as deletion of few sequences at the target site, however, not identical among the each offspring. In conclusion, we found that CRISPR system is very efficient to generate knockout mice in FVB strain.

High-Level Production of Low-Branched Levan from Pseudomonas aurantiaca S-4380 for the Production of $di-\beta-D-Fructofuranose$ Dianhydride IV

  • JANG KI-HYO;JANG EUN-KYUNG;KIM SEUNG-HWAN;KIM IN-HWAN;KANG SOON AH;KOH ISSAC;PARK YOUNG-IL;KIM YOUNG-JUN;HA SANG-DO;KIM CHUL HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.102-108
    • /
    • 2006
  • The IscA gene, encoding a levansucrase of 424 amino acids (aa) residues, was cloned from the genomic DNA of Pseudomonas aurantiaca S-4380, and overexpressed in Escherichia coli. The recombinant levansucrase overexpressed in E. coli was then used to produce levan from sucrose. Levan crystals with 98% purity could be obtained from the reaction mixture with $62\%$ yield using an alcohol precipitation method. The molecular weight of the levan was $7\times10^5$ daltons. Methylation studies showed that the levan was branched: main linkage C-2,6; branched linkage C-2,1; and degree of branching $6\%$. Three bacterial levans from different strains were incubated with levan fructotransferase (LFTase) from Arthrobacter ureafaciens K2032, which produced $di-\beta-D-fructofuranose$ dianhydride IV (DFA IV); final conversion yields from the levans to DFA IV were $39\%$ in Zymomonas mobilis, $53\%$ in Serratia levanicum, and $59\%$ in P. aurantiaca S-4380 levansucrase. The levan from P. aurantiaca S-4380 levansucrase gave the highest conversion yield of levan to DFAIV so far reported.

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.

박테리오파아지 P2-P4 시스템을 위한 tetracyclin resistance marker 함유 P4 유도체 벡터 플라스미드 조성 (Construction of New P4-Derived Vector Plasmid Containing Tetracyclin Resistance Marker for the Bacteriophage P2-P4 System)

  • 김경진
    • 미생물학회지
    • /
    • 제39권2호
    • /
    • pp.118-122
    • /
    • 2003
  • 바이러스 조립 과정 기작 연구를 위한 좋은 재료인 박데리오파아지 P2-P4시스템에 이용될 벡터 플라스미드를 개발하기 위하여, P4 ash8 sid71을 출발 물질로 삼아 새로운 P4 유도체 벡터를 조성하였다. 유전자 재조합 기법을 써서 쉽게 선택 가능한 tetracyclin내성 유전자(tetR)를 도입하고 플라스미드P 4의 크기를 조절하였다. 이를 통해 얻어진 P4 ash8(sid7l) tetR은 12.09 kb의 크기를 가지며, 필요할 때 P2로 induction하면 생물학적 활성을 가지는 박데리오파아지로 전환 가능하였다. 전환된 파아지의 burst size를 결정하고, CsCi 부양균등밀도 편차실험을 수행하였다. 균등밀도 실험 분포도에서 P2크기 파아지 머리의 packaging 상한을 추정할 수 있었다.