Browse > Article
http://dx.doi.org/10.4014/jmb.1107.06064

Cloning, Expression, and Characterization of Endoglucanase Gene egIV from Trichoderma viride AS 3.3711  

Huang, Xiaomei (Northeast Agricultural University)
Fan, Jinxia (Northeast Agricultural University)
Yang, Qian (Department of Life Science and Engineering, Harbin Institute of Technology)
Chen, Xiuling (Northeast Agricultural University)
Liu, Zhihua (Northeast Forestry University)
Wang, Yun (Department of Life Science and Engineering, Harbin Institute of Technology)
Wang, Daqing (Heilongjiang Province Economical Research Institute of State Farm)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.3, 2012 , pp. 390-399 More about this Journal
Abstract
Endoglucanase gene egIV was cloned from Trichoderma viride AS 3.3711, an important cellulose-producing fungus, by using an RT-PCR protocol. The egIV cDNA is 1,297 bp in length and contains a 1,035 bp open reading frame encoding a 344 amino acid protein with an estimated molecular mass of 35.5 kDa and isoelectronic point (pI) of 5.29. The expression of gene egIV in T. viride AS 3.3711 could be induced by sucrose, corn straw, carboxymethylcellulose (CMC), or microcrystalline cellulose, but especially by CMC. The transcripts of egIV were regulated under these substrates, but the expression level of the egIV gene could be inhibited by glucose and fructose. Three recombinant vectors, pYES2-xegIV, $pYES2M{\alpha}$-egIV, and $pYES2M{\alpha}$-xegIV, were constructed to express the egIV gene in Saccharomyces cerevisiae H158. The CMCase activity of yeast transformants $IpYES2M{\alpha}$-xegIV was higher than that of transformant IpYES2-xegIV or $IpYES2M{\alpha}$-egIV, with the highest activity of 0.13 U/ml at induction for 48 h, illustrating that the modified egIV gene could enhance CMCase activity and that $MF{\alpha}$ signal peptide from S. cerevisiae could regulate exogenous gene expression more effectively in S. cerevisiae. The recombinant EGIV enzyme was stable at pH 3.5 to 7.5 and temperature of $35^{\circ}C$ to $65^{\circ}C$. The optimal reaction condition for EGIV enzyme activity was at the temperature of $55^{\circ}C$, pH of 5.0, 0.75 mM $Ba^{2+}$, and using CMC as substrate. Under these conditions, the highest activity of EGIV enzyme in transformant $IpYES2M{\alpha}$-xegIV was 0.18 U/ml. These properties would provide technical parameters for utilizing cellulose in industrial bioethanol production.
Keywords
Trichoderma viride; endoglucanase EGIV; gene cloning; yeast expression;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Adams, A., D. E. Gottschling, C. A. Kaiser, and T. Stearns. 1998. Methods in Yeast Genetics: A Cold Spring Harbor Course Manual. Cold Spring Harbor Laboratory, Press, NY.
2 Armesilla, A. L., C. F. Thurston, and E. Yague. 1994. CEL1: A novel cellulose binding protein secreted by Agaricus bisporus during growth on crystalline cellulose. FEMS Microbiol. Lett. 116: 293-299.   DOI   ScienceOn
3 Bauer, S., P. Vasu, S. Persson, A. J. Mort, and C. R. Somerville. 2006. Development and application of a suite of polysaccharidedegrading enzymes for analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 103: 11417-11422.   DOI   ScienceOn
4 Cai, X. P., J. Zhang, H. Y. Yuan, Z. A. Fang, and Y. Y. Li. 2005. Secretory expression of heterologous protein in Kluyveromyces cicerisporus. Appl. Microbiol. Biotechnol. 67: 364-369.   DOI   ScienceOn
5 Chung, D. K., D. H. Shin, B. W. Kim, J. K. Nam, I. S. Han, and S. W. Nam. 1997. Expression and secretion of Clostridium thermocellum endoglucanase A gene (celA) in different Saccharomyces cerevisiae strains. Biotechnol. Lett. 19: 503-506.   DOI
6 Eriksson, K. E. and S. G. Hamp. 1978. Regulation of endo-1,4-${\beta}$-glucanase production in Sporotrichum pulverulentum. Eur. J. Biochem. 90: 183-190.   DOI   ScienceOn
7 Foreman, P. K., D. Brown, L. Dankmeyer, R. Dean, S. Diener, N. S. Dunn-Coleman, et al. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278: 31988-31997.   DOI   ScienceOn
8 Hoffren, A. M., T. T. Teeri, and O. Teleman. 1995. Molecular dynamics simulation of fungal cellulose-binding domains: Differences in molecular rigidity but a preserved cellulose binding surface. Protein Eng. 8: 443-450.   DOI
9 Hollenberg, C. P. and G. Gellissen. 1997. Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8: 554-560.   DOI   ScienceOn
10 Huang, X. M., Q. Yang, Z. H. Liu, J. X. Fan, X. L. Chen, J. Z. Song, and Y. Wang. 2010. Cloning and heterologous expression of a novel endoglucanase gene egVIII from Trichoderma viride in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 162: 103-115.   DOI   ScienceOn
11 Karlsson, J., M. Saloheimo, M. Siika-aho, M. Tenkanen, M. Penttila, and F. Tjerneld. 2001. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur. J. Biochem. 268: 6498-6507.   DOI   ScienceOn
12 Ibarra, D., V. Kopcke, and M. Ek. 2010. Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb. Technol. 47: 355-362.   DOI   ScienceOn
13 Jabbar, A., M. H. Rashid, M. R. Javed, R. Perveen, and M. A. Malana. 2008. Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition. J. Ind. Microbiol. Biotechnol. 35: 515-524.   DOI   ScienceOn
14 Jagtap, S. and M. Rao. 2005. Purification and properties of a low molecular weight 1,4-[beta]-d-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochem. Biophys. Res. Commun. 329: 111-116.   DOI   ScienceOn
15 Koseki, T., Y. Mese, S. Fushinobu, K. Masaki, T. Fujii, K. Ito, et al. 2008. Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl. Microbiol. Biotechnol. 77: 1279-1285.   DOI   ScienceOn
16 Krautwurst, H., S. Bazaes, F. D. González, A. M. Jabalquinto, P. A. Frey, and E. Cardemil. 1998. The strongly conserved lysine 256 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase is essential for phosphoryl transfer. Biochemistry 37: 6295-6302.   DOI   ScienceOn
17 Kwon, I., K. Ekino, M. Goto, and K. Furukawa. 1999. Heterologous expression and characterization of endoglucanase I (EGI) from Trichoderma viride HK-75. Biosci. Biotechnol. Biochem. 63: 1714-1720.   DOI   ScienceOn
18 Liu, G., X. Tang, S. L. Tian, X. Deng, and M. Xing. 2006. Improvement of the cellulolytic activity of Trichoderma reesei endoglucanase IV with an additional catalytic domain. World J. Microbiol. Biotechnol. 22: 1301-1305.   DOI   ScienceOn
19 Li, X. H., P. Zhang, M. X. Wang, F. Zhou, F. A. Malik, H. J. Yang, et al. 2010. Expression of Trichoderma viride endoglucanase III in the larvae of silkworm, Bombyx mori L. and characteristic analysis of the recombinant protein. Mol. Biol. Rep. 38: 3897-3902.
20 Li, X. H., H. J. Yang, B. Roy, E. Y. Park, L. J. Jiang, D. Wang, and Y. G. Miao. 2010. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 165: 190-198.   DOI   ScienceOn
21 Lynd, L. R., P. J. Weimer, W. H. Van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.   DOI   ScienceOn
22 Markku, S., N. S. Tiina, T. Maija, and P. Merja. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249: 584-591.   DOI   ScienceOn
23 Penttila, M. E., L. Andre, P. Lehtovaara, M. Bailey, T. T. Teeri, and J. K. Knowles. 1988. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63: 103-112.   DOI   ScienceOn
24 Penttila, M. E., L. Andre, M. Saloheimo, P. Lehtovaara, and J. K. Knowles. 1987. Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3: 175-185.   DOI   ScienceOn
25 Qin, Y. Q., X. M. Wei, X. M. Liu, T. H. Wang, and Y. B. Qu. 2008. Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Express. Purif. 58: 162-167.   DOI   ScienceOn
26 Sinegani, A. S. and G. Emtiazi. 2006. The relative effects of some elements on the DNS method in cellulase assay. J. Appl. Sci. Environ. Mgt. 10: 93-96.
27 Saha, B. C. 2004. Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem. 39: 1871-1876.   DOI   ScienceOn
28 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Sping Harbor Laboratory Press, NY.
29 Senthilkumar, V. and P. Gunasekaran. 2005. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges. J. Sci. Ind. Res. 64: 845-853.
30 Song, J. Z., Z. H. Liu, and Q. Yang. 2010. Cloning of two cellobiohydrolase genes from Trichoderma viride and heterogeneous expression in yeast Saccharomyces cerevisiae. Mol. Biol. Rep. 37: 2135-2140.   DOI   ScienceOn
31 Takada, G., T. Kawaguchi, J. Sumitani, and M. Arai. 1998. Expression of Aspergillus aculeatus No. F-50 cellobiohydrolase I (cbhI) and beta-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 62: 1615-1618.   DOI   ScienceOn
32 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL-X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI   ScienceOn
33 Van Rensburg, P., W. H. Van Zyl, and I. S. Pretorius. 1997. Over-expression of the Saccharomyces cerevisiae exo-${\beta}$-1,3-glucanase gene together with the Bacillus subtilis endo-${\beta}$-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-${\beta}$-1,4-glucanase gene in yeast. J. Biotechnol. 55: 43-53.   DOI   ScienceOn
34 Xiao, Z., T. Wang, Y. Qu, and P. Gao. 2001. Cloning and expression of Trichoderma reesei endoglucanase III (EGIII) gene in Saccharomyces cerevasiae. Wei Sheng Wu Xue Bao 41: 391-396.
35 Verbeke, J., P. Coutinho, H. Mathis, A. Quenot, E. Record, M. Asther, and S. Heiss-Blanquet. 2009. Transcriptional profiling of cellulase and expansin-related genes in a hypercellulolytic Trichoderma reesei. Biotechnol. Lett. 31: 1399-1405.   DOI   ScienceOn
36 Villena, G. K. and M. Gutierrez-Correa. 2006. Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett. Appl. Microbiol. 43: 262-268.   DOI   ScienceOn
37 Wymelenberg, A. V., S. Denman, D. Dietrich, J. Bassett, X. Yu, R. Atalla, et al. 2002. Transcript analysis of genes encoding a family 61 endoglucanase and a putative membrane-anchored family 9 glycosyl hydrolase from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 68: 5765-5768.   DOI   ScienceOn
38 Zhou, J., Y. H. Wang, J. Chu, Y. P. Zhuang, S. L. Zhang, and P. Yin. 2008. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour. Technol. 99: 6826-6833.   DOI   ScienceOn
39 Zhu, H., S. Yao, and S. Wang. 2009. MFalpha signal peptide enhances the expression of cellulase eg1 gene in yeast. Appl. Biochem. Biotechnol. 162: 617-624.