• 제목/요약/키워드: receptor complexes

검색결과 76건 처리시간 0.025초

Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

  • An, Byung Chull;Jung, Nak-Kyun;Park, Chun Young;Oh, In-Jae;Choi, Yoo-Duk;Park, Jae-Il;Lee, Seung-won
    • Molecules and Cells
    • /
    • 제39권8호
    • /
    • pp.631-638
    • /
    • 2016
  • Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-infla-mmatory signaling in lung cancer cells.

Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice

  • Thi, Van Anh Do;Jeon, Hyung Min;Park, Sang Min;Lee, Hayyoung;Kim, Young Sang
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.869-883
    • /
    • 2019
  • Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL-15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancer-cell vaccine using mitomycin C (MMC)-treated IL-15:IL-15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) long-term protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.

Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2

  • Na, Eun-Jee;Lee, Sook-Young;Kim, Hak Jun;Oem, Jae-Ku
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.12.1-12.11
    • /
    • 2021
  • Background: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.

Homo- or Hetero-Dimerization of Muscarinic Receptor Subtypes is Not Mediated by Direct Protein-Protein Interaction Through Intracellular and Extracellular Regions

  • Kang, Yun-Kyung;Yoon, Tae-Sook;Lee, Kyung-Lim;Kim, Hwa-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.846-854
    • /
    • 2003
  • The oligomerization of G-proteincoupled receptors (GPCRs) has been shown to occur by various mechanisms, such as via disulfide covalent linkages, non covalent (ionic, hydrophobic) interactions of the N-terminal, and/or transmembrane and/or intracellular domains. Interactions between GPCRs could involve an association between identical proteins (homomers) or non-identical proteins (heteromers), or between two monomers (to form dimers) or multiple monomers (to form oligomers). It is believed that muscarinic receptors may also be arranged into dimeric or oigomeric complexes, but no systematic experimental evidence exists concerning the direct physical interaction between receptor proteins as its mechanism. We undertook this study to determine whether muscarinic receptors form homomers or a heteromers by direct protein-protein interaction within the same or within different subtypes using a yeast two-hybrid system. Intracellular loops (i1, i2 and i3) and the C-terminal cytoplasmic tails (C) of human muscarinic (Hm) receptor subtypes, Hm1, Hm2 and Hm3, were cloned into the vectors (pB42AD and pLexA) of a two-hybrid system and examined for heteromeric or homodimeric interactions between the cytoplasmic domains. No physical interaction was observed between the intracellular domains of any of the Hm/Hm receptor sets tested. The results of our study suggest that the Hm1, Hm2 and Hm3 receptors do not form dimers or oligomers by interacting directly through either the hydrophilic intracellular domains or the C-terminal tail domains. To further investigate extracellular domain interactions, the N-terminus (N) and extracellular loops (o1 and o2) were also cloned into the two-hybrid vectors. Interactions of Hm2N with Hm2N, Hm2o1, Hm2o2, Hm3N, Hm3o1 or Hm3o2 were examined. The N-terminal domain of Hm2 was found to have no direct interaction with any extracellular domain. From our results, we excluded the possibility of a direct interaction between the muscarinic receptor subtypes (Hm1, Hm2 and Hm3) as a mechanism for homo- or hetero-meric dimerization/oligomerization. On the other hand, it remains a possibility that interaction may occur indirectly or require proper conformation or subunit formation or hydrophobic region involvement.

CD137-CD137 Ligand Interactions in Inflammation

  • Kwon, Byung-Suk
    • IMMUNE NETWORK
    • /
    • 제9권3호
    • /
    • pp.84-89
    • /
    • 2009
  • The main stream of CD137 studies has been directed to the function of CD137 in $CD8^+$ T-cell immunity, including its anti-tumor activity, and paradoxically the immunosuppressive activity of CD137, which proves to be of a great therapeutic potential for animal models of a variety of autoimmune and inflammatory diseases. Recent studies, however, add complexes to the biology of CD137. Accumulating is evidence supporting that there exists a bidirectional signal transduction pathway for the CD137 receptor and its ligand (CD137L). CD137/CD137L interactions are involved in the network of hematopoietic and nonhematopoietic cells in addition to the well characterized antigen-presenting cell-T cell interactions. Signaling through CD137L plays a critical role in the differentiation of myeloid cells and their cellular activities, suggesting that CD137L signals trigger and sustain inflammation. The overall consequence might be that the amplified inflammation by CD137L enhances the T-cell activity together with CD137 signals by upregulating costimulatory molecules, MHC molecules, cell adhesion molecules, cytokines, and chemokines. Solving this outstanding issue is urgent and will have an important clinical implication.

Molecular Docking Analysis of Protein Phosphatase 1D (PPM1D) Receptor with SL-175, SL-176 and CDC5L

  • Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제11권1호
    • /
    • pp.25-29
    • /
    • 2018
  • Protein phosphatase manganese dependent 1D (PPM1D), a Ser/Thr protein phosphatise, play major role in the cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Hence, analysis on the structural features required for the formation of PPM1D-inhibitor complex becomes essential. In this study, we have performed molecular docking of SL-175 and -176 and protein-protein docking of CDC5L with PPM1D. On analysing the docked complexes, we have identified the important residues involved in the formation of protein-ligand complex. Research concentrating on these residues could be helpful in understanding the pathophysiology of various tumors related to PPM1D.

Evaluation of Transferrin-Polyethylenimine Conjugate for Targeted Gene Delivery

  • Lee Kyung Man;Kim In Sook;Lee Yong Bok;Shin Sang Chul;Lee Kang Choon;Oh In Joon
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.722-729
    • /
    • 2005
  • With the aim to improve the specificity and to reduce the cytotoxicity of polyethylenimine (PEI), we have synthesized the conjugates of the branched PEI (25 kDa) with transferrin. The trans-ferrin-PEI (TP) conjugates with five compositions were synthesized using periodate oxidation method and confirmed by FT-IR spectroscopy and gel permeation chromatography. The free amine contents of TP conjugates, which were able to condense and deliver DNA, increased as the amount of PEI increased. TP/DNA polyplexes were characterized by measuring gel elec-trophoresis, ethidium bromide fluorescence quenching, particle size and zeta potential of complexes. Complete complexation of the polyplexes was observed above the N/P ratio of 5 in TP/DNA, and above 3 in PEI/DNA, respectively. The zeta potential of the complexes decreased as the amount of transferrin in TP conjugates increased. Transfection efficiency of TP conjugates was evaluated in HeLa cell and Jurkat cell systems. Among the five compositions of TP conjugates, TP-2 system mediated a higher $\beta$-galactosidase gene expression than PEI system in Jurkat cell which was known to express elevated numbers of transferrin receptors. From the results of the cell viability based on MTT assay, TP conjugates showed lower cytotoxicity com-pared with the PEI system. We expect that the TP conjugate can be used efficiently as a non-viral gene delivery vector.

Non-disturbing of Decidual Response by Steroid Hormonal Complexes of Pig Testis

  • Yoo, Ja-Hyun;Byun, Jee-Hyun;Jeon, So-Ra;Lee, Dong-Mok;Chun, Tae-Hoon;Lee, Ki-Ho;Choi, In-Ho;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.53-59
    • /
    • 2011
  • Sex steroid hormones are key molecules to prepare the decidual response and their levels are important in this process. Imbalances of the levels of steroid hormones are cause of implantation failure and other diseases including physical weakness. Androgen replacement therapy or selective androgen receptor modulator are used to overcome various diseases but long-term use may cause of side effects. In previous report, it is suggested that the steroid hormonal complexes derived from pig enhance the proliferation of satellite cell. Therefore, to evaluate the possible usage of steroid hormonal complex derived from pig testis (tS-C), the effects of tS-C on uterine response were studied using the model of artificial decidua. tS-C did not disturb the rhythmical estrus cycle. Artificial-induced decidual response was normally induced in tS-C administered mice. The histological characters of the decidua of tS-C administered mice were not different from the vehicle. The expression patterns of molecular markers of decidua were not different between vehicle and tS-C group. Collectively these results suggested that tS-C does not disturb the uterine responsibility to the embryo. In addition, our results suggested that tS-C can be applied to overcome the various problems such as loss of muscle mass and anemia.

Formation of a Unique 1:2 Calcium-Calixquinone Complex in Aqueous Media

  • Kang, Sun-Kil;Lee, One-Sun;Chang, Suk-Kyu;Chung, Doo-Soo;Kim, Ha-Suck;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.793-799
    • /
    • 2011
  • We report the complexation behavior of calix[4]arenemonoquinone-triacid (CTAQ), which is an electroactive and water-soluble receptor for calcium ion. UV-visible and NMR spectroscopic studies revealed that CTAQ in aqueous media forms 1:2 as well as 1:1 (metal ion:CTAQ) stoichiometric complexes with $Ca^{2+}$, $Sr^{2+}$, and $Ba^{2+}$ ions. The nonlinear fitting of titration curves based on UV-visible absorption spectra showed that the binding constants of CTAQ for $Ca^{2+}$ ion are 4 $({\pm}2){\times}10^6\;M^{-1}$ for 1:1 and 1.4 $({\pm}0.5){\times}10^{11}\;M^{-2}$ for 1:2 complex. NMR conformational studies and the titration curves corroborate that the $Ca^{2+}$:CTAQ complex in aqueous solution is not present in the form of merely 1:1 one, being consistent with UV-visible spectrophotometric results. The Monte Carlo simulation supports the presence of a stable conformer of 1:2 complexes in which a $Ca^{2+}$ ion is interposed between two CTAQs at the global minimum. This is the first model of 1:2 stoichiometric complex of calix[4]arene and alkaline earth ions in aqueous media.

Reversible Effects of Exogenous GM3 on Meiotic Maturation and Cumulus Cells Expansion of Porcine Cumulus-oocyte Complexes

  • Kim, Jin-Woo;Park, Hyo-Jin;Jung, Jae-Min;Yang, Seul-Gi;Kim, Min-Ji;Kim, In-Su;Jegal, Ho-Geun;Koo, Deog-Bon
    • 한국수정란이식학회지
    • /
    • 제33권4호
    • /
    • pp.287-296
    • /
    • 2018
  • Ganglioside GM3 is known as an inhibition factor of cell differentiation and proliferation via inhibition of epidermal growth factor receptor (EGFR) phosphorylation. Our previous study showed that the exogenous ganglioside GM3 reduced the meiotic maturation of porcine oocytes and induced apoptosis at 44 h of in vitro maturation (IVM). However, the role of ganglioside GM3 in the relationship between EGFR signaling and apoptosis during porcine oocyte maturation has not yet been studied. First, porcine cumulus-oocyte complexes (COCs) were cultured in the NCSU-23 medium with exogenous ganglioside GM3 according to maturation periods (non-treated, only IVM I: 0 - 22 h, only IVM II: 22 - 44 h and IVM I & II: 0 - 44 h). We confirmed that the proportion of germinal vesicle breakdown (GVBD) increased significantly in the IVM I treated group than in the control group. We also confirmed that the meiotic maturation until M II stage and polar body formation decreased significantly in the only IVM I treated group. Cumulus cell expansion and mRNA levels of the expansion-related factors (HAS2, TNFAIP6 and PTX3) decreased significantly in the IVM I treated group than in the control group. Protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 decreased significantly in the GM3-treated groups, during the IVM I period. In addition, cellular apoptosis, determined using TUNEL assay, and protein levels of Cleaved caspase 3, were increased significantly in the GM3-treated COCs during the IVM I period. Based on these results, ganglioside GM3 exposure of porcine COCs during the IVM I period reduced meiotic maturation and cumulus cell expansion via inhibition of EGFR activity in pigs.