DOI QR코드

DOI QR Code

Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

  • An, Byung Chull (Department of Anatomy, Chonnam National University Medical School) ;
  • Jung, Nak-Kyun (Department of Anatomy, Chonnam National University Medical School) ;
  • Park, Chun Young (Department of Pathology, Chonnam National University Medical School) ;
  • Oh, In-Jae (Department of Internal Medicine, Chonnam National University Medical School) ;
  • Choi, Yoo-Duk (Department of Pathology, Chonnam National University Medical School) ;
  • Park, Jae-Il (Animal Facility of Aging Science, Korea Basic Science Institute) ;
  • Lee, Seung-won (Department of Anatomy, Chonnam National University Medical School)
  • Received : 2016.06.29
  • Accepted : 2016.07.22
  • Published : 2016.08.31

Abstract

Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-infla-mmatory signaling in lung cancer cells.

Keywords

References

  1. An, B.C., Lee, S.S., Lee, J.T., Hong, S.H., Wi, S.G., and Chung, B.Y. (2011). Engineering of 2-Cys peroxiredoxin for enhanced stresstolerance. Mol. Cells 32, 257-264. https://doi.org/10.1007/s10059-011-1047-x
  2. An, B.C., Lee, S.S., Jung, H.S., Kim, J.Y., Lee, Y., Lee, K.W., Lee, S.Y., Tripathi, B.N., and Chung, B.Y. (2015). An additional cysteine in a typical 2-Cys peroxiredoxin of Pseudomonas promotes functional switching between peroxidase and molecular chaperone. FEBS Lett. 589, 2831-2840. https://doi.org/10.1016/j.febslet.2015.07.046
  3. Barrett, C.W., Ning, W., Chen, X., Smith, J.J., Washington, M.K., Hill, K.E., Coburn, L.A., Peek, R.M., Chaturvedi, R., Wilson, K.T., et al. (2013). Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res. 73, 1245-1255. https://doi.org/10.1158/0008-5472.CAN-12-3150
  4. Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J.M., Delano, D., Zhang, L., Schroth, G.P., Gunderson, K.L., et al. (2011). High density DNA methylation array with single CpG site resolution. Genomics 98, 288-295. https://doi.org/10.1016/j.ygeno.2011.07.007
  5. Bierl, C., Voetsch, B., Jin, R.C., Handy, D.E., and Loscalzo, J. (2004). Determinants of human plasma glutathione peroxidase (GPx-3) expression. J. Biol. Chem. 279, 26839-26845. https://doi.org/10.1074/jbc.M401907200
  6. Chen, B., Rao, X., House, M.G., Nephew, K.P., Cullen, K.J., and Guo, Z. (2011). GPx3 promoter hypermethylation is a frequent event in human cancer and is associated with tumorigenesis and chemotherapy response. Cancer Lett. 309, 37-45. https://doi.org/10.1016/j.canlet.2011.05.013
  7. Cheng, K.C., Cahill, D.S., Kasai, H., Nishimura, S., and Loeb, L.A. (1992). 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J. Biol. Chem. 267, 166-172.
  8. Chung, S.S., Kim, M., Youn, B.S., Lee, N.S., Park, J.W., Lee, I.K., Lee, Y.S., Kim, J.B., Cho, Y.M., Lee, H.K., et al. (2009). Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol. Cell. Biol. 29, 20-30. https://doi.org/10.1128/MCB.00544-08
  9. Do, H., Wong, N.C., Murone, C., John, T., Solomon, B., Mitchell, L., and Dobrovic, A. (2014). A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma. Sci. Rep. 4, 4186.
  10. Drini, M., Wong, N.C., Scott, H.S., Craig, J.M., Dobrovic, A., Hewitt, C.A., Dow, C., Young, J.P., Jenkins, M.A., Saffery, R., et al. (2011). Investigating the potential role of genetic and epigenetic variation of DNA methyltransferase genes in hyperplastic polyposis syndrome. PLoS One 6, e16831. https://doi.org/10.1371/journal.pone.0016831
  11. Greenberg, A.K., Hu, J., Basu, S., Hay, J., Reibman, J., Yie, T.A., Tchou-Wong, K.M., Rom, W.N., and Lee, T.C. (2002). Glucocorticoids inhibit lung cancer cell growth through both the extracellular signal-related kinase pathway and cell cycle regulators. Am. J. Respir. Cell Mol. Biol. 27, 320-328. https://doi.org/10.1165/rcmb.4710
  12. Hayano, T., Garg, M., Yin, D., Sudo, M., Kawamata, N., Shi, S., Chien, W., Ding, L.W., Leong, G., Mori, S., et al. (2013). SOX7 is down-regulated in lung cancer. J. Exp. Clin. Cancer Res. 32, 17. https://doi.org/10.1186/1756-9966-32-17
  13. He, Y., Wang, Y., Li, P., Zhu, S., Wang, J., and Zhang, S. (2011). Identification of GPx3 epigenetically silenced by CpG methylation in human esophageal squamous cell carcinoma. Dig. Dis. Sci. 56, 681-688. https://doi.org/10.1007/s10620-010-1369-0
  14. Hussain, S.P., and Harris, C.C. (1998). Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res. 58, 4023-4037.
  15. Ingawale, D.K., Mandlik, S.K., and Patel, S.S. (2015). An emphasis on molecular mechanisms of anti-inflammatory effects and glucocorticoid resistance. J. Complement. Integr. Med. 12, 1-13. https://doi.org/10.1515/jcim-2014-0051
  16. Jee, C.D., Kim, M.A., Jung, E.J., Kim, J., and Kim, W.H. (2009). Identification of genes epigenetically silenced by CpG methylation in human gastric carcinoma. Eur. J. Cancer 45, 1282-1293. https://doi.org/10.1016/j.ejca.2008.12.027
  17. Kay, P., Schlossmacher, G., Matthews, L., Sommer, P., Singh, D., White, A., and Ray, D. (2011). Loss of glucocorticoid receptor expression by DNA methylation prevents glucocorticoid induced apoptosis in human small cell lung cancer cells. PLoS One 6, e24839. https://doi.org/10.1371/journal.pone.0024839
  18. Kim, Y.S., Park, J.S., Jee, Y.K., and Lee, K.Y. (2004). Dexamethasone inhibits TRAIL- and anti-cancer drugs-induced cell death in A549 cells through inducing NF-kappaB-independent cIAP2 expression. Cancer Res. Treat. 36, 330-337. https://doi.org/10.4143/crt.2004.36.5.330
  19. Kino, T., Souvatzoglou, E., De Martino, M.U., Tsopanomihalu, M., Wan, Y., and Chrousos, G.P. (2003). Protein 14-3-3s interacts with and favors cytoplasmic subcellular localization of the glucocorticoid receptor, acting as a negative regulator of the glucocorticoid signaling pathway. J. Biol. Chem. 278, 25651-25656. https://doi.org/10.1074/jbc.M302818200
  20. Lassar, A.B., Davis, R.L., Wright, W.E., Kadesch, T., Murre, C., Voronova, A., Baltimore, D., and Weintraub, H. (1991). Functional activity of myogenic HLH proteins requires hetero-oligomeri- zation with E12/E47-like proteins in vivo. Cell 66, 305-315. https://doi.org/10.1016/0092-8674(91)90620-E
  21. Lee, O.J., Schneider-Stock, R., McChesney, P.A., Kuester, D., Roessner, A., Vieth, M., Moskaluk, C.A., and El-Rifai, W. (2005). Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett's tumorigenesis. Neoplasia 7, 854-861. https://doi.org/10.1593/neo.05328
  22. Leggas, M., Kuo, K.L., Robert, F., Cloud, G., deShazo, M., Zhang, R., Li, M., Wang, H., Davidson, S., and Rinehart, J. (2009). Intensive anti-inflammatory therapy with dexamethasone in patients with non-small cell lung cancer: effect on chemotherapy toxicity and efficacy. Cancer Chemother. Pharmacol. 63, 731-743. https://doi.org/10.1007/s00280-008-0767-x
  23. Liu, Q., Jin, J., Ying, J., Sun, M., Cui, Y., Zhang, L., Xu, B., Fan, Y., and Zhang, Q. (2015). Frequent epigenetic suppression of tumor suppressor gene glutathione peroxidase 3 by promoter hypermethylation and its clinical implication in clear cell renal cell carcinoma. Int. J. Mol. Sci. 16, 10636-10649. https://doi.org/10.3390/ijms160510636
  24. Lodygin, D., Epanchintsev, A., Menssen, A., Diebold, J., and Hermeking, H. (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65, 4218-4227. https://doi.org/10.1158/0008-5472.CAN-04-4407
  25. McKay, L.I., and Cidlowski, J.A. (1999). Molecular control of immune/inflammatory responses: interactions between nuclear factor- ${\kappa}$B and steroid/receptor-signaling pathways. Endocr. Rev. 20, 435-459.
  26. Mohamed, M.M., Sabet, S., Peng, D.F., Nouh, M.A., El-Shinawi, M., and El-Rifai, W. (2014). Promoter hypermethylation and suppression of glutathione peroxidase 3 are associated with inflammatory breast carcinogenesis. Oxid. Med. Cell Longev. 2014, 787195.
  27. Oh, I.-J., Kim, H.-E., Song, S.-Y., Na, K.-J., Kim, K.-S., Kim, Y.-C., and Lee, S.-W. (2014). Diagnostic value of serum glutathione peroxidase 3 levels in patients with lung cancer. Thoracic Cancer 5, 425-430. https://doi.org/10.1111/1759-7714.12113
  28. Peng, D.F., Hu, T.L., Schneider, B.G., Chen, Z., Xu, Z.K., and El-Rifai, W. (2012). Silencing of glutathione peroxidase 3 through DNA hypermethylation is associated with lymph node metastasis in gastric carcinomas. PLoS One 7, e46214. https://doi.org/10.1371/journal.pone.0046214
  29. Polman, J.A., Welten, J.E., Bosch, D.S., de Jonge, R.T., Balog, J., van der Maarel, S.M., de Kloet, E.R., and Datson, N.A. (2012). A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci. 13, 118. https://doi.org/10.1186/1471-2202-13-118
  30. Qi, X., Ng, K.T.P., Lian, Q.Z., Liu, X.B., Li, C.X., Geng, W., Ling, C.C., Ma, Y.Y., Yeung, W.H., Tu, W.W., et al. (2014). Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma. Oncotarget 5, 11103-11120. https://doi.org/10.18632/oncotarget.2549
  31. Ramamoorthy, S., and Cidlowski, J.A. (2013). Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements. Mol. Cell. Biol. 33, 1711-1722. https://doi.org/10.1128/MCB.01151-12
  32. Reddy, T.E., Pauli, F., Sprouse, R.O., Neff, N.F., Newberry, K.M., Garabedian, M.J., and Myers, R.M. (2009). Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 19, 2163-2171. https://doi.org/10.1101/gr.097022.109
  33. Saga, Y., Ohwada, M., Suzuki, M., Konno, R., Kigawa, J., Ueno, S., and Mano, H. (2008). Glutathione peroxidase 3 is a candidate mechanism of anticancer drug resistance of ovarian clear cell adenocarcinoma. Oncol. Rep. 20, 1299-1303.
  34. Taylor, K.M., Ray, D.W., and Sommer, P. (2016). Glucocorticoid receptors in lung cancer: new perspectives. J. Endocrinol. 229, R17-28. https://doi.org/10.1530/JOE-15-0496
  35. Tothova, V., Isola, J., Parkkila, S., Kopacek, J., Pastorek, J., Pastorekova, S., and Gibadulinova, A. (2011). Glucocorticoid receptor-mediated transcriptional activation of S100P gene coding for cancer-related calcium-binding protein. J. Cell. Biochem. 112, 3373-3384. https://doi.org/10.1002/jcb.23268
  36. Voetsch, B., Jin, R.C., Bierl, C., Benke, K.S., Kenet, G., Simioni, P., Ottaviano, F., Damasceno, B.P., Annichino-Bizacchi, J.M., Handy, D.E., and Loscalzo, J. (2007). Promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene: a novel risk factor for arterial ischemic stroke among young adults and children. Stroke 38, 41-49. https://doi.org/10.1161/01.STR.0000252027.53766.2b
  37. Wang, J.C., Derynck, M.K., Nonaka, D.F., Khodabakhsh, D.B., Haqq, C., and Yamamoto, K.R. (2004). Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc. Natl. Acad. Sci. U SA 101, 15603-15608. https://doi.org/10.1073/pnas.0407008101
  38. Wang, H., Luo, K., Tan, L.Z., Ren, B.G., Gu, L.Q., Michalopoulos, G., Luo, J.H., and Yu, Y.P. (2012). p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3. J. Biol. Chem. 287, 16890-16902. https://doi.org/10.1074/jbc.M111.322636
  39. Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Paabo, S., Rebhan, M., and Schubeler, D. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 7, 457-466.
  40. Yao, D.M., Zhou, J.D., Zhang, Y.Y., Yang, L., Wen, X.M., Yang, J., Guo, H., Chen, Q., Lin, J., and Qian, J. (2015). GPX3 promoter is methylated in chronic myeloid leukemia. Int. J. Clin. Exp. Pathol. 8, 6450-6457.
  41. Ying, C.Y., Dominguez-Sola, D., Fabi, M., Lorenz, I.C., Hussein, S., Bansal, M., Califano, A., Pasqualucci, L., Basso, K., and Dalla-Favera, R. (2013). MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat Immunol. 14, 1084-1092. https://doi.org/10.1038/ni.2688
  42. Yu, Y.P., Yu, G., Tseng, G., Cieply, K., Nelson, J., Defrances, M., Zarnegar, R., Michalopoulos, G., and Luo, J.H. (2007). Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 67, 8043-8050. https://doi.org/10.1158/0008-5472.CAN-07-0648
  43. Zhang, X., Yang, J.J., Kim, Y.S., Kim, K.Y., Ahn, W.S., and Yang, S. (2010). An 8-gene signature, including methylated and downregulated glutathione peroxidase 3, of gastric cancer. Int. J. Oncol. 36, 405-414

Cited by

  1. From silent spring to silent night: Agrochemicals and the anthropocene vol.5, pp.2325-1026, 2017, https://doi.org/10.1525/elementa.246
  2. Comprehensive identification of microRNA arm selection preference in lung cancer: miR-324-5p and −3p serve oncogenic functions in lung cancer vol.15, pp.6, 2016, https://doi.org/10.3892/ol.2018.8557
  3. GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines vol.13, pp.9, 2018, https://doi.org/10.1371/journal.pone.0204170
  4. GPX3 hypermethylation in gastric cancer and its prognostic value in patients aged over 60 vol.15, pp.11, 2016, https://doi.org/10.2217/fon-2018-0674
  5. Glutathione peroxidase 3 (GPX3) suppresses the growth of melanoma cells through reactive oxygen species (ROS)‐dependent stabilization of hypoxia‐inducible factor 1‐α and 2 vol.120, pp.11, 2016, https://doi.org/10.1002/jcb.29240
  6. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence vol.9, pp.1, 2016, https://doi.org/10.1038/s41598-019-52513-x
  7. Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review vol.9, pp.5, 2020, https://doi.org/10.3390/antiox9050383
  8. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer vol.12, pp.8, 2016, https://doi.org/10.3390/cancers12082197
  9. Regulatory Phenomena in the Glutathione Peroxidase Superfamily vol.33, pp.7, 2016, https://doi.org/10.1089/ars.2019.7905