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Abstract

Protein phosphatase manganese dependent 1D (PPM1D), a Ser/Thr protein phosphatise, play major role in the cancer

tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer,

prostate cancer and ovarian cancer. Hence, analysis on the structural features required for the formation of PPM1D-

inhibitor complex becomes essential. In this study, we have performed molecular docking of SL-175 and -176 and protein-

protein docking of CDC5L with PPM1D. On analysing the docked complexes, we have identified the important residues

involved in the formation of protein-ligand complex. Research concentrating on these residues could be helpful in

understanding the pathophysiology of various tumors related to PPM1D.
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1. Introduction

Protein phosphatase, Mg(2+)/Mn(2+) dependent 1D

(PPM1D) also known as WIP1 (wild-type p53-induced

phosphatase 1) which belongs to the PP2C family of

Ser/Thr protein phosphatases[1] are known to be nega-

tive regulators of cell stress response pathways. It con-

trols the feedback regulation of p38-p53 signaling

which in turn activates the inhibition of growth and the

suppression of stress induced apoptosis. PPM1D plays

a crucial role in cancer tumorigenesis[2] and its overex-

pression has been observed in various human tumors,

including neuroblastoma[3], pancreatic adenocarci-

noma[4], medulloblastoma[5], breast cancer[6] and ovarian

cancer[7]. It forms an integral component of ATM-

dependent signaling pathway[8]. In a study by et al., the

chance of identifying PPM1D as a novel biomarker for

prostate cancer was studied[9]. Analysing the structural

features involved in the PPM1D-inhibitor complex thus

becomes essential. In a previous study, we have mod-

elled the 3D structures of PPM1D using homology

modelling[10]. In this study we have performed molec-

ular docking of SL-175, SL-176 and protein-protein

docking of CDC5L with the selected model of GPR54.

The important residues involved in the interaction were

identified and further studies on these residues could be

helpful on the analysis of structural features of PPM1D/

inhibitor interaction. 

2. Material and Methods

2.1. Preparation of Protein Structure

The crystal structure of human PPM1D modelled in

a previous study was study[10]. The structure was pre-

pared using protein preparation tool in biopolymer mod-

ule of SYBYL. Energy minimization was performed for

1000 iterations using Tripos force field, Gasteiger

Huckel charge and Powell method.

2.2 Preparation of Ligand Molecules

In a study by Ogasawara et al., compounds SL-175

and SL-176 were studied for their potency of suppress-

ing cancer cell proliferation by targeting PPM1D phos-

phatase. The chemical structures of both the antagonists

were taken from the literature[11] and were sketched

using sketch molecule function in SYBYL software[12].

The energy minimization of all the molecules was per-

formed using Tripos force field and atomic charges
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were assigned using Gasteiger Huckel method. The

structures of both the molecules are shown in Fig. 1.

2.3. Molecular Docking

Molecular docking was performed utilizing Surflex

dock module of SYBYL. The antagonists were docked

with PPM1D phosphatase. The docking algorithm in

Surflex dock uses an idealized active site called proto-

mol[13]. The protomol is the representation of intended

binding site to which the ligand molecules were docked.

Two parameters, such as threshold and bloat, determine

the extent of a protomol. The protomol was generated

using automated mode. Surflex dock uses an empirical

scoring function to score the docked ligand conforma-

tion which takes into account several terms, including

hydrophobic, polar, repulsive, entropic and solvation[14].

To evaluate the docking results, the docking scores are

expressed in terms of -log10Kd units, where Kd rep-

resents a dissociation constant of a ligand.

2.4. Protein-Protein Docking

Cell division cycle 5-like protein (CDC5L), a protein

that interacts with PPM1D phosphatase is selected to

perform protein-protein docking. The crystal structure

of human CDC5L was downloaded from the Protein

Data Bank (PDB ID: 2DIM). To perform protein-pro-

tein docking of CDC5L with PPM1D Phosphatase,

ClusPro 2.0, the best web server to perform protein-pro-

tein docking, server was used[15,16]. It has performed

well in the critical assessment of prediction of interac-

tions (CAPRI)[17,18]. PIPER, a correlation method[19]

identifies the docked conformation energy in a grid. The

structures were clustered based on the pairwise RMSD

as the distance measure and were optimized.

3. Results and Discussion

3.1. Molecular Docking

Molecular docking of SL-175, SL-176 with the

model of PPM1D phosphatase was performed. 20 dif-

ferent conformations were generated for each molecule

and the best conformation was chosen based on Surflex

score and interaction with the residues. The docking

score and H-bond forming residues for all the molecules

are tabulated in Table 1. The binding mode of the antag-

onists with the receptor was represented in Fig. 2. On

analyzing the docked complexes, residues ARG357,

ARG359, GLN360 and ARG361 were identified to be

involving in forming H-bond interactions with the

antagonists.

Fig. 1. Structure of antagonist molecules (a) SL-175 (b)

SL-176.

 Table 1. Docking scores and H-bond interaction of the antagonists

Compound No. Sybyl score No. of H-bonds H – Bond Residues

SL175 4.48 2 ARG357, GLN360

SL176 4.33 2 ARG359, ARG361
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3.2. Protein-Protein Docking

CLUSPRO 2.0 server was used to perform protein-

protein docking to identify the important residues

involved in the interaction. 29 different clusters of

docked complexes were generated. The top cluster con-

sists of 70 members, and lowest energy weighted score

was -1033.8. On analysing the complexes, we have

identified that residues ASN384, GLU388, ASP389,

GLU405, GLU423 and ASN431 were forming H bond

interaction with CDC5L. The cluster scores for both the

complexes are represented in Table 2. The binding

mode of CDC5L with PPM1D is represented in Fig. 3.

Fig. 2. Binding mode of SL-175 (yellow) and SL-176 (red)

with PPM1D phosphatase. 

Table 2. Cluster scores developed using ClusPro server

Cluster Members Representative
Weighted 

Score

0 70 Center -798.4

Lowest Energy -1033.8

1 64 Center -850.0

Lowest Energy -896.4

2 58 Center -778.8

Lowest Energy -976.7

3 49 Center -986.3

Lowest Energy -986.3

4 38 Center -808.6

Lowest Energy -853.6

5 37 Center -806.0

Lowest Energy -889.4

6 36 Center -952.6

Lowest Energy -952.6

7 34 Center -791.4

Lowest Energy -905.8

Table 2. Continued

Cluster Members Representative
Weighted 

Score

8 31 Center -795.4

Lowest Energy -943.0

9 27 Center -1079.0

Lowest Energy -1079.0

10 27 Center -929.0

Lowest Energy -929.0

11 26 Center -821.7

Lowest Energy -995.0

12 26 Center -818.2

Lowest Energy -829.7

13 22 Center -950.2

Lowest Energy -950.2

14 22 Center -837.2

Lowest Energy -837.2

15 19 Center -881.9

Lowest Energy -881.9

16 18 Center -905.1

Lowest Energy -1039.9

17 18 Center -896.1

Lowest Energy -896.1

18 17 Center -786.8

Lowest Energy -866.6

19 17 Center -816.8

Lowest Energy -844.2

20 17 Center -816.2

Lowest Energy -816.2

21 16 Center -781.2

Lowest Energy -904.2

22 16 Center -785.4

Lowest Energy -868.4

23 15 Center -789.1

Lowest Energy -957.8

24 14 Center -820.4

Lowest Energy -869.3

25 12 Center -850.7

Lowest Energy -850.7

26 11 Center -908.3

Lowest Energy -908.3

27 11 Center -770.1

Lowest Energy -892.9

28 11 Center -863.3

Lowest Energy -863.3

29 11 Center -843.8

Lowest Energy -843.8
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4. Conclusion

Molecular docking of PPM1D phosphatase with

inhibitors SL-175 and SL-176 and protein-protein dock-

ing of CDC5L-PPM1D was performed. On analysis of

the docking results, we have identified the important

residues involved in the formation of H-bond interac-

tion with the protein. Further studies on these crucial

Fig. 3. (a) Binding mode of CDC5L with PPM1D phosphatase. (b) LigPlot of CDC5L and PPM1D phosphatase complex. 
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residues could be useful in providing the important

structural features involved in the formation of PPM1D-

inhibitor complex.
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