• Title/Summary/Keyword: realistic antenna system

Search Result 23, Processing Time 0.034 seconds

On the Degradation of a UWB System Due to a Realistic TX-RX Antenna System

  • Jun, Min-Sik;Oh, Tae-Won
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.453-456
    • /
    • 2005
  • The ultra-wideband (UWB) signal radiation process in an antenna is different from that of a narrowband signal. In this paper, we study the degradation of the desired signal component according to the antenna structure and location of a receiver in a bipolar time-hopping UWB system. And we propose a receiver structure with an adaptive template waveform generator to compensate for the degradation caused by a realistic TX-RX antenna system.

  • PDF

On the W-CDMA system with Smart Antenna over Wideband Realistic Channel Model (광대역 실측채널모델에서 스마트 안테나를 적용한 W-CDMA 성능분석)

  • Kim, Byoung-Hak;Bae, Hyoung-Oh;Kim, Cheol-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.91-94
    • /
    • 2000
  • In this paper, the performance of the W-CDMA system with smart antenna is investigated. The realistic wideband channel is assumed, one of which is JTC(Joint Technique Committee) channel model. It is also assumed that multipaths are clustered. The beamforming-RAKE receiver structure of W-CDMA system is proposed, whose performance is analyzed on the assumption of perfect channel estimation. The probability density function (pdf) of SINR(Signal to Interference and Noise Ratio) for different number of antennas and users is presented, and the BER(Bit Error Rate) is presented based on that. As a result, the performance of the W-CDMA system with smart antenna in the realistic wideband channel has been considerably improved.

  • PDF

On the W-CDMA system with Smart Antenna over Wideband Realistic Channel Model (광대역 실측채널모델에서 스마트 안테나를 적용한 W-CDMA 성능분석)

  • 김용성;배형오;김병학;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.33-36
    • /
    • 2000
  • In this paper, the performance of the W-CDMA system with smart antenna is investigated. The channel is assumed as wideband realistic channel mode, JTC(Joint Technique Committee), which has clustered multipaths. The beamforming-RAKE receiver structure is proposed, whose performance is analyzed on the assumption of the perfect channel estimation. In a simulation, the probability density function(pdf) of SINR(Signal to Interference and Noise Ratio) according to the number of antennas and users is presented. And based on the pdf of SINR, the BER(Bit Error Rate) is presented. According to the result of a simulation, the performance of the W-CDMA system with smart antenna over the realistic JTC channel model has been considerably improved.

  • PDF

Efficient detectors for MIMO-OFDM systems under spatial correlation antenna arrays

  • Guerra, David William Marques;Fukuda, Rafael Masashi;Kobayashi, Ricardo Tadashi;Abrao, Taufik
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.570-581
    • /
    • 2018
  • This work analyzes the performance of implementable detectors for the multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system conditions, including antenna correlation and array configuration. A time-domain channel model was used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order, and antenna array configurations. Several MIMO-OFDM detectors were analyzed for the purpose of achieving high performance combined with high capacity systems and manageable computational complexity. Numerical Monte Carlo simulations demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.

Link-level Performance Verification of the Multiple Antenna Systems - MIMO OFDM vs. Smart Antenna OFDM (OFDM 기반 다중 안테나 시스템의 링크레벨 성능검증 - MIMO OFDM vs. Smart Antenna OFDM)

  • Park Sung-Ho;Kim Kyoo-Hyun;Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.563-574
    • /
    • 2006
  • This paper implements SCM(Spatial Channel Model), a kind of ray-tracing method which has characteristics similar to realistic wave propagation environments, for link-level performance analysis of OFDM(Orthogonal Frequency Division Multiplexing) based multiple antenna systems. The SCM is proposed by 3GPP & 3GPP2 Spatial Channel AHG(Ad-hoc Group) for system-level performance validation. In this paper, we modify the system level parameters and channel coefficient of SCM to compare the link-level performances of OFDM based multiple antenna systems. Through computer simulations, we manifest the implemented SCM channel characteristics. We analyze a realistic link-level performance of OFDM based conventional MIMO(Multiple Input Multiple Output) system and smart antenna system in the implemented channel. We also include the link-level performance of OFDM based multiple antenna systems in I-METRA(Intelligent Multi Element Transmit and Receive Antenna) and independent channel environments with the same system parameters. We suggest appropriate multiple antenna system in the given environment by comparing the link-level performance in the spatial channels that have different channel correlation values.

Analysis of W-CDMA System with Smart Antenna for Angular Spread in Realistic Wideband Multipath Channel (광대역 다중경로 실측 채널에서 스마트 안테나를 적용한 광대역 CDMA 시스템의 각도퍼짐에 따른 성능분석)

  • 전준수;김철성
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.527-535
    • /
    • 2003
  • In this paper, the performance of W-CDMA system with smart antenna is analyzed for angular spread in realistic wideband multipath channel. The realistic wideband channel is assumed, one of which is JTC channel model. And each multipath is assumed as a reflective wave from only one direction (only one cluster) in space. Several multipaths within one chip are distinguished into each one and the strongest signal is selected. As a result, the performance of the W-CDMA system with smart antenna in realistic wideband multipath channel has been considerably improved in proportion to the increase of angular spread.

Performance Analysis of Space-Time Codes in Realistic Propagation Environments: A Moment Generating Function-Based Approach

  • Lamahewa Tharaka A.;Simon Marvin K.;Kennedy Rodney A.;Abhayapala Thushara D.
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.450-461
    • /
    • 2005
  • In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of a space-time coded system operating over spatially correlated fast (constant over the duration of a symbol) and slow (constant over the length of a code word) fad­ing channels using a moment-generating function-based approach. We discuss two analytical techniques that can be used to evaluate the exact-PEPs (and therefore, approximate the average bit error probability (BEP)) in closed form. These analytical expressions are more realistic than previously published PEP expressions as they fully account for antenna spacing, antenna geometries (uniform linear array, uniform grid array, uniform circular array, etc.) and scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.). Inclusion of spatial information in these expressions provides valuable insights into the physical factors determining the performance of a space-time code. Using these new PEP expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power distribution parameters (angle of arrival/departure and angular spread) on the performance of a four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Analysis of ATS Verification Results for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.448-451
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is an electro-optical camera system which is being developed to be installed on KOMPSAT-2 satellite. High resolution image data from MSC system will be transmitted to the ground-station through x-band antenna called APS (Antenna Pointing System). APS is a directional antenna which will point to the receiving antenna at ground station while the satellite is passing over it. The APS needs to be controlled accurately to provide the reliable communication with big RF link margin. The APS is controlled by ATS (Antenna Tracking Software) which is included in the MSC software. ATS uses the closed loop control algorithm which will use TPF (Tracking Parameter File) as an input for antenna position, and will use two resolve readings from APS as a feedback. ATS has been developed and verified using APS QM (Qualification Model) and all the control parameters for ATS have been tested and verified. Various kinds of maximum, nominal and realistic dynamics for the APS movement have been simulated and verified. In this paper, closed loop servo control algorithm and obtained APS position error from the verification test with APS QM will be presented in detail

  • PDF

Performance Analysis Based on RAU Selection and Cooperation in Distributed Antenna Systems

  • Wang, Gang;Meng, Chao;Heng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5898-5916
    • /
    • 2018
  • In this paper, the downlink performance of multi-cell distributed antenna systems (DAS) with a single user in each cell is investigated. Assuming the channel state information is available at the transmitter, four transmission modes are formulated as combinations of remote antenna units (RAUs) selection and cooperative transmission, namely, non-cooperative transmission without RAU selection (NCT), cooperative transmission without RAU selection (CT), non-cooperative transmission with RAU selection (NCT_RAUS), and cooperative transmission with RAU selection (CT_RAUS). By using probability theory, the cumulative distribution function (CDF) of a user's signal to interference plus noise ratio (SINR) and the system ergodic capacity under the above four modes are determined, and their closed-form expressions are obtained. Furthermore, the system energy efficiency (EE) is studied by introducing a realistic power consumption model of DAS. An expression for determining EE is formulated, and the closed-form tradeoff relationship between spectral efficiency (SE) and EE is derived as well. Simulation results demonstrate their consistency with the theoretical analysis and reveal the factors constraining system EE, which provide a scientific basis for future design and optimization of DAS.

Effect of Antenna Aperture Field on Co-channel Interference, Capacity, and Payload Mass in High Altitude Platform Communications

  • Thornton, John;Grace, David
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.467-474
    • /
    • 2004
  • In a High Altitude Platform (HAP) cellular communications network, each cell may be served by a dedicated spot-beam antenna. The antennas' beam properties and their spatial overlap control the co-channel interference. In prior literature, radiation patterns have been approximated by a main lobe followed by a constant sidelobe floor. A network of 121 cells has been studied and the method is here extended to the use of more realistic radiation patterns based on the theoretical aperture antenna patterns. This allows for the comparison of the effect of different aperture field tapers, which lead to reduced sidelobe levels and hence higher system capacity but also a more massive antenna payload.

  • PDF