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This work analyzes the performance of implementable detectors for the multiple-
input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM)
technique under specific and realistic operation system conditions, including antenna
correlation and array configuration. A time-domain channel model was used to eval-
uate the system performance under realistic communication channel and system sce-
narios, including different channel correlation, modulation order, and antenna array
configurations. Several MIMO-OFDM detectors were analyzed for the purpose of
achieving high performance combined with high capacity systems and manageable
computational complexity. Numerical Monte Carlo simulations demonstrate the
channel selectivity effect, while the impact of the number of antennas, adoption of

linear against heuristic-based detection schemes, and the spatial correlation effect
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1 | INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
modulation scheme widely used in many communication sys-
tems, including several commercial applications such as wire-
less networks (Wi-Fi 802.11) and cellular systems (LTE) [1].
In those systems, it is also common to combine the OFDM
with multiple-input multiple-output (MIMO), which can
improve the spectral efficiency of the system [2,3]. However,
to couple the OFDM to the MIMO system, it is necessary to
understand the basics of SISO channel and SISO-OFDM.
Usually, inside an OFDM system, a large number N of
subcarriers is deployed in order to achieve a flat fading con-
dition on each subchannel. This is particularly important in
realistic scenarios, where the wireless channel introduces dis-
persion effects on the signal, creating selective channels. In

under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.
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[4], a SISO-OFDM system was simulated to show how the
number of subcarriers influences its performance on a multi-
path fading indoor channel based on the Saleh-Valenzuela
model, but not considering the Doppler frequency.

In flat fading channels, the coherence bandwidth of the
channel (AB), is larger than W, the bandwidth of the sig-
nal. Hence, all frequency components of the signal experi-
ence the same magnitude of fading. On the other hand, in
frequency-selective fading channels, (AB). < W occurs. As
a consequence, different frequency components of the sig-
nal experience correlated fading.

In OFDM systems, to mitigate the intersymbol interfer-
ence (ISI) caused by multipath fading, it is necessary to
use a guard interval. The most used type of guard interval
on OFDM systems is the cyclic prefix (CP), as described
analytically in [5].
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One of the most recent well-established data transmis-
sion structures is the multiple-input multiple-output
(MIMO) system, which uses multiple antennas at the trans-
mitter and receiver sides to transfer data over a wire or
wireless channels. MIMO systems are able to increase data
rates by means of multiplexing or to improve performance/
reliability through a diversity mode [6]. The data increase
can be achieved sending different data via different anten-
nas. By simultaneously sending the same data via multiple
antennas, the reliability is increased by exploiting diversi-
ties such as time and space diversity. In spatial multiplex-
ing, the signal that reaches at each receive antenna suffers
interference from the other N, — 1 antennas, where N; rep-
resents the number of transmitting antennas. Hence, the
purpose of demultiplexing-detection schemes is to mitigate
the effects of the interference [7]. Hence, on the receiver
side, there are a large number of MIMO detection tech-
niques available. In this work, several MIMO-OFDM
detectors are characterized and numerically evaluated under
specific but realistic channel and system scenarios, includ-
ing the maximum likelihood (ML), linear zero-forcing
(ZF), and linear minimum mean-square error (MMSE)
detectors. Moreover, two MIMO-OFDM detectors based on
evolutionary heuristic approaches also have been analyzed,
namely, the particle swarm optimization (PSO) detector
and differential evolution (DE) detector.

Indeed, because the ML detector solution requires an
exhaustive search through all possible symbol combinations
[8], while linear closed solutions such as ZF and MMSE
result in a poor performance for highly correlated channels
[9], evolutionary heuristic algorithms are strong candidates
for producing better solutions than linear detectors, and
they result in reduced computational complexity compared
to ML because heuristic approaches do not evaluate all
possibilities.

The PSO algorithm has already been applied to solve the
detection problem in MIMO-OFDM systems in [8,10]. In
[8], the PSO, and in [11], the binary PSO, were evaluated
and the numerical results of bit error rate (BER) and compu-
tational complexity were analyzed. In [10], the perfor-
mances of DE, PSO, and the genetic algorithm were
compared. On the other hand, in our work, the performance-
complexity tradeoff of the evolutionary heuristic PSO and
DE MIMO-OFDM detectors are analyzed under practical
and useful scenarios, that is, considering spatial correlated
channels and other linear conventional MIMO-OFDM
detectors. The system model in a real-valued representation
is considered while the selection procedure for the heuristic
input parameters of the PSO and DE algorithms are
addressed accordingly. Besides, to the best of our knowl-
edge, there are no studies considering a comparative analy-
sis of evolutionary heuristics and classical MIMO-OFDM
detectors operating under spatial correlation antenna arrays.
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The contribution of this work is threefold. First, we analyze
and compare the performance and implementability of several
MIMO-OFDM detectors, including linear and evolutionary
heuristic approaches, operating under realistic system configu-
rations. Second, the influence of parameters related to the dis-
tance between the antennas, which determine the spatial
antenna correlation, is discussed; two antenna array configura-
tions are considered, the uniform linear array (ULA) [12] and
uniform rectangular array (URA) [13]. Last, a systematic pro-
cedure is developed and used to calibrate the input parameters
of both evolutionary heuristic PSO and DE detectors with the
aim of establishing a fair performance comparison between
the linear and heuristic MIMO-OFDM detectors.

The rest of this work is organized as follows. In Sec-
tion 2, the OFDM system is revised and the TD channel
emulator is explored. The spatial channel correlation, ML,
ZF, MMSE, as well as the evolutionary heuristic PSO and
DE detectors are described in Section 3. Extensive numeri-
cal simulation results are analyzed in Section 5, including
reliability evaluation, the channel selectivity effect, BER
performance comparison regarding spatial correlation, mod-
ulation order, and sensibility analysis. Conclusions and
final remarks are offered in Section 6.

2 | OFDM TRANSMISSION AND
MIMO CHANNEL

OFDM is one type of multicarrier modulation that can be
easily implemented using discrete Fourier transform (DFT)
and its inverse (IDFT), or their equivalents, the fast Fourier
transform (FFT) and inverse FFT (IFFT). OFDM modula-
tion consists of parallel data transmission with some modu-
lation such as M-QAM or M-PSK applying an IFFT to
transform a signal in the FD into one in the TD. Thereafter,
the CP is added. Data are converted into an analog signal.
Finally, the signal is multiplied to a carrier by frequency f
for transmission.

On the receiver side, signal r(f) represents the transmit-
ted signal s(f) corrupted by noise. Signal r(f) is multiplied
by cos (2xf.t), passes through a low-pass filter, is converted
to digital information, the CP is removed, and the serial
data is converted into parallel data. A DFT is performed,
the symbols are converted to serial symbols and demodu-
lated according to their respective scheme of modulation,
and the information bits can then be estimated.

In order to mitigate ISI, some strategies such as cyclic
suffix, silence, or the most common CP can be adopted.

CP consists of copying the last 4 elements of the input
sequence s[n] and adding them to the start of s[n], where
h[n] = h[O], A[1], ..., h[u] represents a channel impulse
response of length u + 1. After the CP addition, the
OFDM symbol becomes $[n], with length [N + y]. Observe
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that the CP is an overhead and does not carry any informa-
tion, which reduces the spectral efficiency.

The choice of the number of subcarriers N depends on
the channel characteristics. For the design of an OFDM
system, two properties of the channel are considered, which
are the maximum delay spread (7. and the maximum
Doppler frequency (fy). OFDM systems require that N must
be large enough so each subcarrier experiences a flat fading
condition. Each subcarrier has a bandwidth B that is smal-
ler than the system total bandwidth, centered at a frequency
w1, @, ..., W, Subcarriers with a bandwidth of B can be
overlapped at a maximum rate of 50%.

2.1 | MIMO-OFDM system

The combination of an OFDM system with the use of mul-
tiple antennas at the transmitter and receiver results in a
MIMO-OFDM system (Figure 1) with N, transmit and N,
receive antennas. A QAM modulator and multiplexing con-
figuration, where different data are sent through different
antennas resulting in higher data rates than single-input sin-
gle-output (SISO) channel configuration, have been consid-
ered.

On the transmitter side, the data feeds a serial-to-parallel
converter, resulting in N, data streams that are modulated
in a similar way as OFDM SISO: the bit stream is modu-
lated, symbols are converted to parallel, IDFT is per-
formed, the CP is added, and the signal is multiplied by
the carrier with frequency f. and finally transmitted. On the
receiver side, the signal is converted to baseband, trans-
formed into digital, the CP is removed, the signals serve as
a MIMO detector, and finally, the symbols are demodu-
lated deploying QAM demodulator.
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FIGURE 1 Block diagram of a MIMO-OFDM system

Because the OFDM technique allows parallel transmis-
sion over several subchannels, we can model a MIMO-
OFDM system with N subcarriers in the TD as [14,15]:

y[n] = Hn)x[n] +2[n], n=0,1,....N—1, (1)

where 7 is the subcarrier index, y[n] € C"*! denotes the
received signals, H[n] € C**™ denotes the channel matrix
gains, x[n]€C**!' denotes the transmit symbols, and
z[n] € CV*! is Gaussian noise with zero mean and variance
o.

Therefore, we can interpret a MIMO system for each
subcarrier, as illustrated in Figure 2. Thus, a MIMO-
OFDM symbol block is composed of N, X N, OFDM sym-
bols. Finally, it is important to note that if the number of
subcarriers is insufficient to make the channel of each sub-
carrier flat, channel equalization cannot be implemented
correctly.

Implementable MIMO-OFDM detectors operating in
realistic fading channels and practical system configuration
are discussed in Section 3.

3 | MIMO SPATIAL CORRELATION
AND LINEAR DETECTORS

3.1 | MIMO-OFDM spatial correlation
model

In channel modeling, the correlation among transmit and/or
receive antennas is an important aspect to be considered in
realistic MIMO channels and systems [16]. To model and
evaluate the spatial antenna correlation, the Kronecker
operator is deployed as:

Heonln] = VRGl]\/RY @

where H_,,[n] is the correlated channel of the nth subcar-
rier, uncorrelated channel matrix G is composed of inde-
pendent and identically distributed entries, v/R; and /R
are the square root of the spatial correlation matrices at the
transmitter and receiver antennas, respectively.

/ yi[N] hu[N]  hia[N] - hm[N] xi[N]q  rzi[N] £
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FIGURE 2 MIMO-OFDM problem
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3.2 | Uniform linear antenna array (ULA)

A spatial correlation model for ULA was proposed in [12].
This model considers that the antennas are arranged
equidistantly, where d, and d, represent the spacing
between the transmitting and receiving antennas, respec-
tively. For simplicity of analysis, assuming the same num-
ber of antennas at the transmitter and receiver (N, = N,)
side, while the spatial correlation matrix of the transmitter
and receiver antennas are assumed to be equal
vR; = +/R|. The spatial correlation matrix results Toeplitz,
being expressed by:

2
1 P ,04 p(NI*U
p L p
R =R =| p p 1 Pt 3)
P : p
/)(Nl_l> e /)4 [) 1

where p € [0, 1] represents the normalized correlation
index between antennas.

3.3 | Uniform rectangular antenna array
(URA)

An approximation for the URA correlation model was pro-
posed in [13]. This model assumes that the URA matrix cor-
relation between the antennas is obtained from the
Kronecker product of 2 ULA correlation matrices. Consider-
ing an URA configuration on the XY plane with n, and n,
antenna elements along X and Y coordinates, respectively,
we have an array with n = n, X n, antennas. Further, the
correlation between the elements along the X coordinate
does not depend on Y and is given by matrix R,, and the
correlation along Y coordinate does not depend on X and is
given by matrix R,. As a result, the Kronecker model
approximation for the URA correlation matrix is as follows:

Rr = Rx & Ry7 (4)

where @ is the Kronecker product.

3.4 | Maximum likelihood (ML) MIMO
detector

The ML detector provides the best performance, but its
complexity makes it impractical for real applications. This
detector calculates all the possible symbols combinations
and chooses the one symbol vector x that provides the min-
imum Euclidian distance between the received data y and
the reconstructed data defined by the channel matrix H and
symbol-vector candidate x. Hence, the estimated symbol X
can be mathematically expressed by

ETRI JournaWILEY——"

X = miny||y — Hx||*. )

3.5. | Zero-forcing (ZF) MIMO detector

Considering a MIMO system operating under multiplexing
mode, the data that reach the receptor are the linear super-
position of the signals of all the N; antennas [7]. The ZF
detector ignores the additive noise z in (1) and solves the
linear system by multiplying the received signal by the
inverse matrix, which is defined, according to the Moore—
Penrose inverse, as:

H' = (H'H)'H”. )

Z

The estimated symbol is given by

x=Hy. ™

3.6 | Minimum mean-square error (MMSE)
MIMO detector

The MMSE detector considers the thermal noise channel
statistics. This method tries to minimize the squared
error between the true and estimated values of the trans-
mitted symbols, x and X, respectively [7] via optimiza-
tion

H' = minwy Ellx — Wy]||. 8)

mmse

Hence, solving this MMSE optimization problem, the
MIMO channel matrix results in the MMSE pseudoinverse
matrix described by

No\ !

H = (HHH + EI) HY, ©)
where % is the inverse of the signal-to-noise ratio (SNR).
Finally, the estimated symbol under linear MMSE MIMO
detection is obtained in the same way as in (7) and is give
by:

x=H__ v (10)

4 | HEURISTIC-BASED MIMO-OFDM
DETECTORS

In this section, the heuristic PSO and DE algorithms are
described in the context of the MIMO-OFDM detection
problem. The complex system model is described in a
well-known equivalent
example, in [17]. The deployment of the fitness function
to evaluate the candidate solution provided by heuristic

real-valued representation, for
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algorithms is illustrated. PSO and DE algorithms are pre-
sented afterwards, while the input parameter tuning
problem for the evolutionary heuristic algorithms is
addressed.

4.1 | Real value representation

The MIMO-OFDM system presented in (1) can be
represented using a real-valued matrix and vectors in the
form

ol = Hlnlyln] + €], an
with
C[MHE) 3R] [Riyl)
Hin] = {S{H[n]} R{H]]) }"’[ ] [S{y[n]}]’
RO [
in] = {S{M]’ﬂ } {s{zw}]’

where H[n] € R**! is the real-valued representation of the
channel matrix, vectors y[n], &[n] e R™ 1! are the real-
valued representations of the received signal and additive
noise, respectively, and u[n]e[RiszXl is the real-valued
original information.

4.2 | Fitness function

The fitness function evaluates the quality of the estimated
symbol and guides the evolutionary heuristic search on
the candidate-solution feasible subspace. For the detection
problem, the fitness function is based on the Euclidean
distance between the received signal and the reconstructed
one [8,10,11]. Considering &, the kth candidate solution
of an evolutionary heuristic, namely a particle in PSO or
individual in DE, the fitness function is calculated as fol-
lows:

F&) = l[oln] — Hnlg, ). (12)

For the detection problem, a minimization problem is con-
sidered, and lower values of the fitness function are
desired.

4.3 | PSO-based detection algorithm

PSO was proposed by [18] considering a population-
based approach, emulating bird flocking and fish school-
ing behavior. The PSO algorithm calculates the velocity
and position of each particle inside the swarm; using a
matrix representation [19], they are given, respectively,
by

V=wV+ U @(Mpb—P)+02U2®(Mgb—P), (13)
and
P=P+V, (14)

where © denotes the Hadamard product, w, c¢;, and c;
represent inertia, cognitive, and social factors, respec-
tively; U; and U, are random matrices with elements
following uniform distributions U; ~U[0;1]; M, is a
matrix that stores the values of the personal best of each
particle and My, is a matrix constructed of the positions
of the global best particle pg,, given in the form M, =
[Pep - - Pgp] € RN Mr. Matrix P is a real-valued matrix
representing positions, while V represents the particle
velocity matrix; explicitly,

Ngim XN,
ER dim pop7

P == [p] .. 'prop]7V = [V] .o .VNPOP}

where vectors py, vi € RV ! with k=1, ... , Npop repre-
sent the position and velocity of the kth particle, with Ny,
representing the population size and Ng, denoting the
dimensionality of the problem.

In order to avoid the possibly that the velocity vector
grows to infinity [20], a limitation of the velocity [~Viax,
Vimax] [21] was considered, where V., represents the max-
imum achievable velocity of the N,,, particles. Regarding
the inertia parameter, it can be a constant or a linear or
nonlinear function [22]. In this work, to give to the algo-
rithm exploitation ability at the beginning and exploration
for fine search near the solution [21], a strategy of decreas-
ing the inertia factor at each iteration by 0.99w is consid-
ered.

The initialization of both implemented PSO and DE
heuristic algorithms was the same; the position of the parti-
cles P and initial population in DE are generated randomly
following a uniform distribution inside the search space of
the problem [23]. These positions are set as the personal
best position of the particle in matrix Mp,. The fitness
function in (12) is evaluated (§; = pr, Kk = 1, ... , Njer), the
position of the particle that produces the lowest value
(since we are dealing with a minimization problem) is set
as the global best position pg,, and the matrix Mg, is
formed.

After evaluation of (13) and (14), matrices My, and
M,;, are updated (if needed) and the process is repeated
until the stop criteria is met. In our implementation, a stop
criterion based on a predefined maximum number of evalu-
ations Nj., is used. Hence, after N, iterations, the output
of the evolutionary heuristic algorithm is the vector of best
position Ppg,, Which is the estimated symbol X in the
MIMO-OFDM detection problem.
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Pseudocode summarizing the procedure for the evolution-
ary heuristic PSO algorithm is presented in Algorithm 1.

Algorithm 1. PSO

1: Input parameters: c¢j, ¢, W, Npop,

Niter

2: Generate initial positions P

3: Fitness function evaluation and initialization of My, and M,
4: for 1 to Njer do

5:  Calculate velocity using (13)

6 Calculate position using (14)

7: Evaluate fitness function (12) for all particles py
8 Update personal best matrix My,

9 Update global best matrix Mgy,

10:  Velocity limitation

11:  Inertia factor reduction

12: end for
13: Output: p,,

4.4 | DE-based detection algorithm

DE is an evolutionary population-based heuristic that relies
on a population of individuals to find a global optimum.
The algorithm relies on the operations of mutation, cross-
over, and selection to produce more suitable individuals
through N, generations.

The DE algorithm was presented in [23] and operates as
follows. There are Nj,q > 4 vectors of individuals that are
represented as 1 € [RN‘“"‘XI, k=1,..., Nndg, Where Ngim
represents the dimensionality of the problem. Here, follow-
ing the procedure defined in [23], the rand/1/bin strategy
is employed. Strategies to escape local optima that are
adopted in the DE-based detector are described in the fol-
lowing.

4.4.1 | Mutation
The kth mutation vector v is constructed as:
v =1, + Fru(ty, — 1), (15)

where k #ry #r, #r; and k=1, ... , Njy. Variables r,
ry, and r;3 are integer random indexes uniformly distributed
inside the interval [1, 2, , Nipgl and Fo € [0, 2]
represents the mutation scale factor.

4.4.2 | Crossover

The kth crossover vector Wk = 1, ..., Ni,q) is constructed
as follows. The ith element, i =1, ... , Ng, of the kth
crossover vector s, is selected given the following rule:

if rande[0,1] < Fyori=ry
0,1

if rand€[0,1] > F¢r and § # ry (16)

Vi = {jik

ik

where rand ~U[0,1], r4 is uniformly distributed in the inter-

val [0;1], 4 is an integer randomly generated in the interval

[1, ..., Ngiml], and the crossover factor is defined by F, €

[0, 1]. As pointed out in [23], the crossover vector has at
least one element from the mutation vector, that is, i = r4.

4.4.3 | Selection

The next generation of individuals 1§ is constructed as fol-
lows:

¢ = Wk if f(we) <f(w) (17
k 1 otherwise ’

The fitness function in (12) evaluates v, and ;. Vectors
that produce more suitable values (smaller values) are
selected and a new generation of individuals is produced.

After the execution of N, iterations, the best individ-
ual, in other words, the individual corresponding to the
lowest value of the fitness function in (12) is the output of
the algorithm and the estimated symbol x of the MIMO-
OFDM detection problem. Pseudocode synthesizing the DE
steps is presented in Algorithm 2.

Algorithm 2 DE

1: Input parameters: Fe, Frnue Nings Ngen
: Generate initial individuals
: for 1 t0 Ngep do

Mutation using (15), k =1, ..., Nina

2
3
4
5: Crossover using (16), i =1, ... , Ning; k=1, ... , Ning
6 Select new individuals using (17), k = 1, ..., Njna

7: end for

8

: Output: best individual v

4.5 | Input parameters

The choice of nonoptimal input parameter values could sub-
stantially degrade the performance results provided by the
heuristic algorithm in a given application, as studied in [24] for
the ant colony optimization algorithm. Besides, the PSO algo-
rithm also suffers from alteration of its convergence properties
when the input parameters are chosen incorrectly [20,25,26].
In the same way, the DE-based algorithm has recommended
intervals of values to achieve fast convergence [23]. For
instance, the number of individuals must be N;,q € {5;10}Ning,
where Ny, is the problem dimension, as suggested in [23].

To fairly compare the selected evolutionary heuristic
algorithms, and since such an approach is sensible with
respect to the choice of the input parameter values, which
can differ substantially considering the nature of different
optimization problems, the input parameter tuning



WILLIAM MARQUES GUERRA ET AL.

™ | WILEY—ETRI Journal

procedure here is obtained numerically and discussed in
Sections 5.1.1 and 5.1.2.

5 | NUMERICAL RESULTS

In this section, numerical simulation results of MIMO-
OFDM system are discussed. Linear and evolutionary
heuristic detector performance subject to spatial antenna
correlation effect is compared.

5.1 | MIMO-OFDM reliability evaluation

The parameters adopted in the Monte Carlo simulations are
shown in Table 1. Additionally, the system operates with

TABLE 1 MIMO-OFDM simulation parameters

Parameter Value
OFDM
System bandwidth BW 20 MHz
Modulation order M 4-QAM
Delay spread 7y 5 1Ins
# subcarriers N 64
(AB). 3.125 MHz
Subcarrier flatness (‘ﬁf)\f 10
MIMO

2X%x2;4%x4;8%x8
Linear (ULA); rectangular (URA)

# antennas N, X N,

Antenna array type

Spatial correlation index p€10;0.5;0.9]
Linear detectors ZF & MMSE
Heuristic detectors PSO & DE
Power allocation strategy EPA
Channel
Type NLOS rayleigh channel
CSI knowledge Perfect
Mobility (freq. Doppler) fa=0Hz
PSO detector
Population size Npqp 40
Iterations Nax 100
Search space [-1; 1]
Cognitive factor ¢, 4

1(0); 0.5(0.5); 1(0.9)
1.5(0); 1.5(0.5); 3.5(0.9)

Social factor c,(p)
Inertia w(p)
DE detector
# generation N, 100
0.6(0); 0.6(0.5); 0.8(0.9)
0.6(0); 0.8(0.5); 1.8(0.9)
# individuals Nj,q 40

Crossover factor F(p)

Mutation factor Fp,,1(p)

perfect channel state information (CSI). Performance of
such detectors is compared with the optimum maximum-
likelihood (ML) MIMO-OFDM detector. The total power
allocated was equally distributed (EPA) among the N,
antennas in order to promote a fair comparison.

Specifically, in the MIMO-OFDM detection problem
with heuristics, a 4-QAM modulation format was considered,
with valid symbols defined by {-1+1j, —-1-1j, 1+1j, 1-1j},
while the search space was limited to the interval of integer
values [+1]. The heuristic algorithm was applied to each sub-
carrier as presented in the model description in (11), resulting
in Ngim = 2N, symbols to be estimated per subcarrier. For
the PSO detection algorithm, parameter V.., = 1 was used
in the simulations, reflecting the dynamic range of each parti-
cle inside the search space [21].

5.1.1 | Input parameter calibration for PSO-
aided MIMO-OFDM detector

First, a round of simulations was executed to tune the PSO
input parameters. Here, these parameters were obtained
numerically over 100 simulation runs and averaged to obtain
the values in Figure 3. The start parameters were Ny, = 40,
¢y = ¢, w = 1, and Ny, = 50. In Figure 3, the PSO input
parameters were altered considering a wide range of input
parameter values. The scenario assumed was 4 X 4, 4-QAM
modulation MIMO-OFDM, considering a system operating
in a medium-high SNR, that is, E,/N, = 24 dB, and different
values of spatial correlation. Choosing PSO parameters that
provide small values of BER yielded the input parameters
shown in Table 1 and deployed in the numerical simulation
setup discussed in this section. Related to the population
size, even with a marginal decrease in BER, low values of
Npop are desirable because this parameter has a direct impact
in the computational complexity of the algorithm, as detailed
in Section 5.2.

In Figure 4, the convergence behavior for the PSO-
based detector is analyzed. It can be observed that conver-
gence depends on the level of Ey/Ny; the number of itera-
tions for convergence increases with SNR, from =~ 25 to
50 iterations when E/N, increases from 5 dB to 10 dB
and 15 dB. Moreover, high values of spatial correlation
(p = 0.9) seem to interfere substantially in the convergence
speed of the PSO algorithm applied in the MIMO-OFDM
detection problem. After around 40 iterations, there are
small improvements in the solution (symbol detection) pro-
vided by PSO algorithm for any spatial correlation level.

5.1.2 | Input parameter calibration DE-aided
MIMO-OFDM detector

A similar procedure was carried out to find the best input
parameter values of the DE-based detector in the context of



WILLIAM MARQUES GUERRA ET AL.

4-QAM 4 x 4 OFDM MIMO
PSO Ev/No = 24dB

—O-ZF,p=0.0-A-PSO,p=0.0 —~ZF,p=0.5
—4—PS0O,p=0.5 & ZF,p=0.9-%—PSO,p=0.9

BER

(©) (D)

FIGURE 3 Calibration of PSO input parameter values for 4-
QAM 4 x 4 MIMO-OFDM detection problem operating under

medium-high SNR and different spatial correlation indexes
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FIGURE 4 Convergence analysis for a 4-QAM, 4 x 4

MIMO-OFDM with PSO detector considering different values of
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MIMO-OFDM detection. This algorithm requires the
parameters to be inside the intervals F.. € [0, 1] and
Fou € [0, 2]. Moreover, Nj,q > 4 and it is recommended
[23] that Nj,q be between 5Ny, and 10Ny;,. The selected
input parameters values were chosen to be those that mini-
mize the BER and are presented in Table 1. Note that the
optimum mutation factor value increases with antenna cor-
relation index p. Figure 5 depicts the simulated BER
curves for a wide range of input parameter values, showing
the best values of such input parameters, that is, those val-
ues that minimize the BER. The calibration procedure is

finished when the range of those input parameters is nar-
rowed.
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FIGURE 5 Calibration of the input parameters for the DE-aided
MIMO-OFDM detector algorithm considering different values of
spatial correlation

After the input parameter tuning procedure, the conver-
gence of the DE-aided OFDM-MIMO detector algorithm is
obtained, as depicted in Figure 6. Similar to the PSO con-
vergence behavior, the convergence of the DE detector
seems to be attained at around 40 iterations, being influ-
enced mainly by the Ey/E, levels.

5.1.3 | Effect of spatial correlation on
performance

In this section, the numerical simulation results for the
BER performance were obtained under different correlation
index p values, which represents the antenna separation on
the transmitter and receiver sides, as depicted in Figure 7.
As inferred previously from Figures 4 and 3, the spatial

correlation deteriorates the BER performance; as p
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FIGURE 6 Convergence of the DE-aided detector for MIMO-
OFDM systems for different spatial correlation values
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FIGURE 7 BER performance for 4-QAM, 4 x 4 ULA antenna
MIMO-OFDM detectors under different values of spatial correlation
and SNR

increases, the probability of error also increases. Under the
most highly correlated channels p = 0.9, the ZF detector
provides an unacceptable performance, even operating
within the high Ey/E, region. The effect of degradation of
spatial correlation on the performance also influences the
ML detector's performance; however, the ML detector still
attains a suitable performance considering uncoded system,
at the cost of an enormous computational complexity.
Alternatively, considering low-complexity evolutionary
DE-based and PSO-aided detectors under the p = 0 scenar-
io, PSO can outperform MMSE; however, in a highly cor-
related situation, this performance advantage becomes
marginal, while the DE-based MIMO-OFDM detector per-
forms marginally worse than MMSE for all SNR regions.
Hence, under medium or even highly correlated MIMO
channels, the linear MMSE and the PSO-based detectors
represent good options regarding the performance-complex-
ity tradeoff in MIMO-OFDM systems.

Figure 8 explores the BER performance considering pla-
nar arrays (URA) instead of a ULA. For high E/E,, med-
ium p, and a low number of antennas (4 X 4), the planar
array configuration slightly outperforms the linear array
design for ZF, MMSE, and PSO detectors (compare the
BER performance of Figures 7 and 8). Note that the use of
a URA system implies a slightly higher correlation among
antennas compared to the ULA. Despite this, the URA per-
formance remains very similar to that of the ULA and is
even slightly better at high SNR.

5.1.4 | Sensitivity analysis

To compare the BER degradation with respect to array
antenna correlation, the sensitivity of the detectors’ perfor-
mance regarding the level of correlation can be defined as:

BER
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FIGURE 8 BER performance for 4-QAM 4 x 4 OFDM MIMO
with linear and heuristic detectors for a URA configuration and

different values of correlation and SNR

Ksen = 108175 BERgn — logg BERf,

18)

where BER,.s represents the reference BER value, and
BER,, is the BER in a specific scenario, including spatial
correlation conditions or detector type.

For illustration purposes, two cases are studied: the
degradation in performance when comparing the BER of
each detector with respect to uncorrelated antennas (p = 0);
and the degradation using the ML detector as a reference,
since its performance is superior to that of the others. Fig-

ure 9 depicts both sensitivity scenarios.
k,: In Figure 9A, the sensitivity considering the perfor-
mance of each detector at p = 0 as the correlation increases
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FIGURE 9 Sensitivity of detectors for two correlation scenarios:

(A) k,, comparing each detector with its BER under p = 0 and (B)

Kml, comparing detector performance with ML detector performance

under p = 0



WILLIAM MARQUES GUERRA ET AL.

ETRI JournaWILEY——"

was numerically obtained. Hence, comparing the perfor-
mance degradation sensitivity for each detector at p = 0.5
and p = 0.9, one can conclude that ML's sensitivity to
increasing channel correlation is severely degraded com-
pared with that of the linear and heuristic detectors because
of its excellent performance under the p = 0 condition;
while for the ZF detector, the degradation is small, since it
already has poor performance compared to the other detec-
tors. In short, the four MIMO-OFDM detectors are not
robust to the spatial correlation channel effect.

Km: In Figure 9B, sensitivity is shown, taking the
ML detector BER performance with p = 0 as reference
BER,.;. For medium correlation values (p = 0.5), the PSO
is most near to ML's sensitivity performance degradation,
and so «k, has relatively low results. For p = 0.9, the ZF
detector performs poorly in terms of BER, resulting in a
high sensitivity index k.. The PSO-aided detector is more
sensitive in terms of k, because its BER varies more as
correlation increases, but less sensitive in terms of &,
mainly for low and medium spatial correlation channel
indexes (p < 0.5).

5.2 | Complexity analysis

To evaluate the complexity of the algorithms, the number of
floating point operations (FLOPs), defined as a floating
point addition, subtraction, multiplication, or division [27]
between real numbers, are considered. Here, both the Hermi-
tian and if conditional operators are disregarded. In a real
implementation, some platforms may use hardware-based
random number generators, where an electric circuit pro-
vides the random numbers; hence, the FLOP cost for random
number generation was also disregarded in this analysis.

The FLOPs required for the main operations are sum-
marized in Table 2 and the full complexity expressions are
denoted by Y. These values for the considered MIMO-
OFDM detectors are presented in Table 3. To analyze the
detectors’ FLOP complexity for different numbers of anten-
nas, Figure 10 depicts the linear and heuristic detector
complexities assuming Ny, = 2Ny, Ny = N,, and Njq =
Npop = 5Ngim, and considering the number of iterations
until convergence is obtained through simulations, as
shown in Figures 4 and 6.

The ML detector computes all possible input matrices
[6] resulting in the evaluation of (5) as ML times,
where M represents the modulation order, making it the
most computationally complex of the detectors considered.
It can be observed that the DE algorithm requires more
FLOPs than PSO since it evaluates two Ny, times the fit-
ness function per iteration in (17) for individuals and cross-
over vectors. The complexity among the linear detectors is
almost the same, differing by a scalar—matrix multiplication
and matrix—matrix sum in (6) and (9).

TABLE 2 Number of FLOPs for vector and matrix operations:
we R AeR™ BeR?? CeR™” DeR™

Operation # FLOPS
Matrix-matrix multiplication AB mp(2g — 1)
Matrix-vector multiplication Aw m2qg — 1)
Matrix multiply-add AB + C 2mpq
Square root /- 8

Matrix inversion using LU factorization of D [28] 2/ 3¢ + 42
Norm-2, vVwlw 2g—1+38

TABLE 3 Number of FLOPs per subcarrier for the MIMO-
OFDM detectors, with H € RNy e RPV ! Ny = 2N,
Detector
Yzr(Ne, Ny)
Yimse@Vr, Ny
Ypso (N, Nr, Npop, I)
YoE(Ne, Niy Ning, Z)
Y (Ny, Ny, M)

Number of operations

N3 + 4N} + 32N2N; + 4NN, — 2N,
1ON3 + 8NZ + 32N2N; + 4NN,
NpopZ (81N + 20N, + 4N; + 7)

NinaZ (16NN; + 12N, + 8N; + 14)
MV (8NN, + 4N, +7)

Complexity reduction ML Complexity increment ZF
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FIGURE 10 Relative complexity of MIMO-OFDM detectors
considering different numbers of antennas for linear and heuristic
detectors in a point-to-point scenario: Ny = N, Ngim = 2Ny, Ning =
Nyop = S5Ngim, T = 50, M = 4.

Relative complexity is depicted in Figure 10. On the left
side, the complexity reduction relative to ML and linear/
heuristic detectors, evaluated as Yye/Y,, are shown. All the
studied MIMO-OFDM detectors decrease complexity with
respect to the ML detector. Note that PSO provides slightly
more reduction than DE, and linear detectors provide more
than the heuristics, at the cost of BER performance. On the
right side, the complexity increases relative to the linear
low-complexity ZF MIMO-OFDM detector Y4o/Y,¢ is
determined. Note that the linear MMSE detector has a
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complexity that is near to that of ZF resulting in values
close to one, while the ML detector complexity increases
rapidly as the number of antennas increases. The heuristic
PSO detector increments complexity more slowly than the
DE detector at almost the same BER performance, offering
a good complexity tradeoff between computational com-
plexity vs performance, mainly when the number of anten-
nas increases (such as in massive MIMO systems).

6. | CONCLUSIONS

The analysis of an OFDM scheme was developed consider-
ing NLOS Rayleigh fading channel conditions. Extensive
simulations were deployed and suitable input parameters for
the evolutionary heuristics PSO and DE were chosen numer-
ically for the MIMO-OFDM detection problem. The conver-
gence of a PSO-based detector depends mainly on the Ey/N,
level, requiring more iterations as the SNR increases.

Spatial correlation degrades the performance of the ana-
lyzed MIMO-OFDM detectors. For the uncorrelated sce-
nario (p = 0), the PSO-aided detector outperforms linear
detectors ZF and MMSE. However, for high correlation
(p = 0.9), the PSO detector gain in terms of BER perfor-
mance becomes marginal. The performance degradation as
correlation increases is quantified by the sensitivity of the
detectors for different levels of correlation.

Planar antenna arrays marginally outperform the linear
array configurations for the ZF, MMSE, PSO, and DE
MIMO-OFDM detectors considering high SNR operation
region and low number of antennas. When the number of
such outperformance may become
noticeable. Although the correlation among antennas is
slightly higher in the URA, this difference is not enough to
deteriorate the performance of the system.

Comparing the complexity of the detector algorithms,
the linear MMSE detector provides better performance than
the linear ZF for almost the same computational complex-
ity. Among the representative evolutionary heuristic
MIMO-OFDM detectors, the PSO provides lower incre-
ments in complexity with respect to the DE detector, and
almost the same (similar) BER performance for all the sys-
tem and channel scenarios analyzed, both offering a suit-
able computational complexity vs performance tradeoff,
even under medium spatial antenna correlation levels.

antennas increases,
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