Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0005

Efficient detectors for MIMO-OFDM systems under spatial correlation antenna arrays  

Guerra, David William Marques (Electrical Engineering Department, State University of Londrina)
Fukuda, Rafael Masashi (Electrical Engineering Department, State University of Londrina)
Kobayashi, Ricardo Tadashi (Electrical Engineering Department, State University of Londrina)
Abrao, Taufik (Electrical Engineering Department, State University of Londrina)
Publication Information
ETRI Journal / v.40, no.5, 2018 , pp. 570-581 More about this Journal
Abstract
This work analyzes the performance of implementable detectors for the multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system conditions, including antenna correlation and array configuration. A time-domain channel model was used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order, and antenna array configurations. Several MIMO-OFDM detectors were analyzed for the purpose of achieving high performance combined with high capacity systems and manageable computational complexity. Numerical Monte Carlo simulations demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.
Keywords
BER performance; heuristic detector; linear detector; MIMO-OFDM; multipath channel; spatial correlation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. L. Hanzo et al., MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers, Wiley-IEEE Press, Torquay, UK, 2011.
2 G. Foschini and M. Gans, On limits of wireless communications in a fading environment when using multiple antennas, Wirel. Pers. Commun. 6 (1998), no. 3, 311-335.   DOI
3 E. Telatar, Capacity of multi-antenna Gaussian channels, Eur. Trans. Telecommun. 10 (1999), no. 6, 585-595.   DOI
4 M. A. Saeed, B. M. Ali, and M. H. Habaebi, Performance evaluation of OFDM schemes over multipath fading channels, Asia-Pacific Conf. Commun. (IEEE Cat. No.03EX732), Penang, Malaysia, Sept. 21-24, 2003, pp. 415-419.
5 H. Steendam and M. Moeneclaey, Analysis and optimization of the performance of OFDM on frequency-selective time-selective fading channels, IEEE Trans. Commun. 47 (1999), no. 12, 1811-1819.   DOI
6 A. Goldsmith, Wireless communications, Cambridge University Press, New York, NY, USA, 2005.
7 J. R. Hampton, Introduction to MIMO communications, Cambridge University Press, New York, NY, USA, 2014.
8 A. Trimeche et al., The particle swarm optimization (PSO) for symbol detection in MIMO-OFDM system, Int. J. Inform. Secur. 4 (2013), no. 1, 38-45.
9 D. W. M. Guerra et al., Linear detection analysis in MIMO-OFDM with spatial correlation, 12th IEEE Int. Conf. Ind. Appicat. (INDUSCON), Curitiba, Brazil, 2016, pp. 1-8.
10 M. N. Seyman and N. Taspinar, Symbol detection using the differential evolution algorithm in MIMO-OFDM Systems, Turkish J. Elect. Eng Comp. Sci. 21 (2014), 373-380.
11 A. A. Khan, M. Naeem, and S. I. Shah, A particle swarm algorithm for symbols detection in wideband spatial multiplexing systems, 9th Annu. Conf. Genet. Evol. Comput. (GECCO '07), New York, NY, USA, 2007, pp. 63-69.
12 V. Zelst and J. Hammerschmidt, A single coefficient spatial correlation model for multiple-input multiple-output (Mimo) radio channels, 27th Gen. Assem. Int. Union Radio Sci. (URSI), Maastricht, Netherlands, Aug. 17-24, 2002, pp. 2-5.
13 G. Levin and S. Loyka, On capacity-maximizing angular densities of multipath in MIMO channels, IEEE 72nd Veh. Tech. Conf.-Fall, Ottawa, Canada, Sept. 2010, pp. 1-5.
14 J. Janhunen et al., Fixed- and floating‐point processor comparison for MIMO‐OFDM detector, IEEE J. Sel. Top. Signal Proc. 5 (2011) no. 8, 1588-1598.   DOI
15 A. P. R. N. D. Gore, Introduction to space-time wireless communications, Cambridge University Press, Cambridge, UK, 2003.
16 Y. S. Cho et al., MIMO-OFDM wireless communications with MATLAB, Wiley Publishing, Noida, India, 2010.
17 J. G. Proakis and M. Salehi, Digital communications, 5th ed., McGraw-Hill, New York, USA, 2008.
18 Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization, Evol. Prog. VII, V. W. Porto, N. Saravanan, D. Waagen and A. E. Eiben, Eds., Springer Berlin Heidelberg, Berlin, Germany, 1998, pp. 591-600.
19 J. Kennedy and R. C. Eberhart, Particle swarm optimization, IEEE Int. Conf. Neural Netw., Perth, Australia, Nov, 27-Dec. 1, 1995, pp. 1942-1948.
20 M. R. Bonyadi and Z. Michalewicz, Particle swarm optimization for single objective continuous space problems: A review, Evol. Comput. 25 (2017), no. 1, 1-54.   DOI
21 Y. Shi and R. Eberhart, A modified particle swarm optimizer, IEEE Int. Conf. Evol. Comput. Proc. IEEE World Cong. Comput. Intell. (Cat. No. 98TH8360), Anchorage, AK, USA, May 4-9, 1998, pp. 69-73.
22 R. Storn and K. Price, Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (1997), no. 4, 341-359.   DOI
23 J. C. M. Filho, R. N. deSouza, and T. Abrao, Ant colony input parameters optimization for multiuser detection in DS/ CDMA systems, Expert Sys. Appl. 39 (2012), no. 17, 12876-12884.   DOI
24 M. Clerc and J. Kennedy, The particle swarm-Explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. 6 (2002), no. 1, 58-73.   DOI
25 I. C. Trelea, The particle swarm optimization algorithm: Convergence analysis and parameter selection, Inform. Proc. Lett. 85 (2003), no. 6, 317-325.   DOI
26 G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed., Johns Hopkins University Press, Baltimore, USA, 2013.
27 S. Cheng and Y. Shi, Normalized population diversity in particle swarm optimization, Springer Berlin Heidelberg, Berlin, Germany, 2011, pp. 38-45.
28 S. Boyd and L. Vandenberghe, Numerical linear algebra background, available at http://www.seas.ucla.edu/-vandenbe/ee236b/lectures/num-lin-alg.pdf (Accessed Apr. 23, 2018).