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ABSTRACT⎯The ultra-wideband (UWB) signal radiation 
process in an antenna is different from that of a narrowband 
signal. In this paper, we study the degradation of the desired 
signal component according to the antenna structure and 
location of a receiver in a bipolar time-hopping UWB system. 
And we propose a receiver structure with an adaptive template 
waveform generator to compensate for the degradation caused 
by a realistic TX-RX antenna system. 

Keywords⎯Degradation, realistic antenna system, ultra-
wideband (UWB). 

I. Introduction 
In contrast to a narrowband wireless system using a carrier, a 

time-hopping ultra-wideband (TH-UWB) system uses a non-
sinusoidal wave [4]. The radiation process of a non-sinusoidal 
signal between the transmitting (TX) and receiving (RX) 
antennas is significantly different from that of a sinusoidal 
signal. In the case of a narrowband system using a sinusoidal 
wave, the original waveform is maintained after passing 
through the TX-RX antenna system. In several papers on TH-
UWB, it has been claimed that the received waveform passed 
through antennas is the first or second derivative of a 
transmitted waveform [2],[3]. However, the practical 
relationship between the input current to an antenna system and 
the generated field waveform is a function of several 
parameters such as antenna geometry, input current mode, and 
location of the receiver. 

In this paper, we demonstrate that the receiving waveform is 
heavily distorted by the length of the radiator and the 
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observation angle in a bipolar TH-UWB system using the 1st 
derivative Gaussian pulse. We also analyze how this distortion 
degrades the BER performance of TH-UWB system.  

II. UWB Antenna System Model 

In this paper, we obtain an impulse response of a TX-RX 
antenna system through an analytical method. We assume that 
the TX-RX antenna system considered in this paper is made up 
of a monopole and Hertzian dipole. 

Figure 1(a) shows the geometry used to obtain an analytical 
relationship between the exciting current waveform p(t) and 
the waveform of radiated electromagnetic field E(t) in an 
observation point assigned by the spherical coordinates (ρ, θ, φ). 
Angle θ is the angle between directions to the observation point 
and antenna axis, L is the length of the antenna, and R(l) is the 
distance to the observation point. In [6], the tangential far 
region electrical component of a monopole radiated field is 
presented as  
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In the Hertzian dipole antenna with a capacitive load, the 
voltage across a capacitive load of the RX antenna s(t) is in 
proportion to the electric field strength E(t) [3]. That is, 

   ( ) ( )tEKts ⋅= .                  (2) 

Combining (1) and (2), the voltage waveform s(t) is 
described using the exciting current waveform p(t) as  
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Since the antenna system is a linear time-invariant (LTI) 
system, and the relationship between the input and output of 
the antenna system is described as (3), the impulse response of 
a TX-RX TH-UWB antenna system can be characterized as 

( ) ( ) ( ){ }321L,,given 
KtKtKta −−−= δδ

θρ
,          (4) 

where K1, K2 and K3 are the functions of ρ, θ , and L. 
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Fig. 1. (a) A monopole antenna excited by transient current p(t)
and (b) a Hertzian dipole as an RX antenna. 
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III. Effect of the Antenna System 

A bipolar TH-UWB system including a transmitter, receiver, 
antenna system, and channel is shown in Fig. 2. For 
convenience, the additive white Gaussian noise (AWGN) 
channel is located after the antenna system. The transmitting 
pulse p(t) is a bipolar modulated TH-UWB signal with 
successive N symbols. 
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where w(t) is the 1st derivative Gaussian pulse, Tf is a frame 
time interval, Cn is a time hopping sequence within 0≤ Cn< Nh, 
Tc is a pulse width, and dn∈ {-1,1} is the equal probable 
information data.  
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where * is a convolution operator. 
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where n(t:u) is a zero mean AWGN with a variance N0/2. 
The output signal of a correlation type demodulator that 

exists in the m-th frame time interval [(m-1)Tf, mTf ] is defined 
as X(u): 
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where v(t) is a template signal generated at the receiver and 
represents the 2nd derivative Gaussian pulse train. We assume 
that the receiver is well synchronized in time. Considering X(u), 
we found that X(u) consists of two random variables: a desired 
signal component and a noise component. 

( ) ( ) ( )uxuxuX AWGND +=              (9) 

Let’s define w(t-τ)*a(t) as w'(t-τ) for a constant τ and 
dttvtwfmT

fTm∫ −
−⋅

)1(
)()( ξ as Rwv(ξ). Since xD(u) is the m-th  

transmitting symbol,  

 ( ) ( ) ( )0vwmD Rudux ′= .             (10) 

 

Fig. 2. A bipolar TH-UWB system under AWGN environment.

Pulse 
shaper 

w(t)

Antenna
system 

a(t) 
Detectordt)(⋅∫

dn(u) p(t) s(t) r(t) X 

n(t) v(t) 

 
 

Table 1. Parameters for the TH-UWB system. 

Parameter Notation Typical value

Mono pulse width Tc ≈ 0.57ns 

Wave impedance of free space Zo 377Ω 

Distance between TX & RX antennas ρ 4 m 

The velocity of light c 3×108 m/s 
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Fig. 3. Normalized value of xD according to θ and L. 
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Fig. 4. A receiver structure with adaptive template waveform
generator. 
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 The desired signal component is a correlation of a template 
waveform and a received waveform distorted by the impulse 
response of the TX-RX antenna system. Using the parameters 
of Table 1, Fig. 4 shows the variation of xD according to θ and 
L when the distance between TX antenna and RX antenna is 
fixed. 

As a result of Fig. 3, we can understand that the change of an 
antenna impulse response degrades the desired signal quality in 
a bipolar TH-UWB receiver. 

IV. Adaptive Template Waveform Generator 

In this section, we propose an adaptive template waveform 
generator (ATWG) to solve the degradation of xD. The ATWG 
traces an optimal state to generate a template waveform that is 
the same as a received waveform. We can rewrite xD  to make 
a time origin shift of (8). 
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From (11), we know that the received waveform is made up 
of two w(t)’s with the time interval Kd. In order to have a 
template waveform be the same as a received waveform, the 
relation between ATWG input signal w(t) and ATWG output 
signal ( )tv̂  must be  

( ) ( ) ( )dKtwtwtv ˆˆ −−= ,            (12) 

where dK̂  is the estimated value that maximizes the absolute 
value of xD.  

From (12), the impulse response of ATGW ( )tâ  becomes  

( ) ( ) ( )dKttta ˆˆ −−= δδ .            (13) 

Therefore, ATWG can be embodied in three blocks: variable 
time delay, summation, and estimation blocks. 

To analyze the bit error rate (BER) performance on a bipolar 
TH-UWB system with ATWG and without ATWG, the 
statistical properties of each component are derived. Supposing 
that the observation point does not change while successive N 
symbols are being transmitted, the mean and variance of the 
desired signal component are 

( )[ ] 0=uxE D , ( )( )[ ] ( )( )22 0vwD RuxE ′= .      (14) 

Component xAWGN is the AWGN component at the 
demodulator output:  
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Since E[n(t;u)]=0 and E[n(t;u)n(s;u)]=N0δ(t-s)/2, the 
variance of xAWGN is  
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In a bipolar modulated TH-UWB system, there is a bit in a 

frame time interval. The bit energy Eb is presented as  

( )( ) fvwb TRE ⋅= ′
20  .             (17) 

The AWGN energy N can be obtained from (16) multiplied 
with Tf and is presented as  

( )( ) fvv TRNN ⋅= 2
0 02 .            (18) 

Variable xAWGN is a zero mean Gaussian random variable. 
The BER probability of bipolar modulated system is described 
in [1] as 
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where Q(x) is a standard Q function. 
Figure 5 shows the BER performance result of a bipolar TH-

UWB system with an ATWG. The figure shows that the BER 
performance is improved when the ATWG is adopted. 
However, the ATWG has a limitation when the desired signal 
component is attenuated seriously because it only compensates 
for a time delay due to a propagation delay internal to the 
antenna system. 
 

 

Fig. 5. Comparison between BER performances of the TH-UWB 
system with and without ATWG. 
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V. Conclusion 

The role of a TX-RX antenna in a TH-UWB system is 
different from that in a narrowband system. The desired signal 
power degraded according to the antenna structure and the 
location of the receiver. Also, the BER performance of a 
bipolar TH-UWB system is critically affected by the antenna 
geometry and location of the receiver. A receiver with the 
proposed adaptive template waveform generator is proposed to 
solve the above problems. 
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