• Title/Summary/Keyword: real terrain

Search Result 264, Processing Time 0.027 seconds

Three-dimensional resistivity imaging for site investigations in civil engineering (지반조사를 위한 3차원 전기비저항 탐사)

  • Chung Seung-Hwan;Yi Myeong-Jong;Kim Jung-Ho;Cho Seong-Jun;Song Yoonho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.21-36
    • /
    • 1999
  • Recently resistivity survey is widely used for site investigations in the field of civil engineering. Since such application area requires accurate interpretation tools especially in the area of complicated geology and rough terrain topography, we developed a three-dimensional (3-D) resistivity inversion code, which can reconstruct real earth structures. Furthermore, the inversion code gives resolution-enhanced images by applying the ACB(Active Constraint Balancing) method. With the help of this inversion code, 3-D resistivity survey is now used as new techniques for site investigations in civil engineering problem. By imaging the 3-D resistivity distribution, we could get useful informations such as depth distribution of basement rock, distribution of weak zone, fractures and cavities which is crucial to civil engineers.

  • PDF

Linkage of GSIS and Expert System for Route Selection (노선선정을 위한 GSIS와 전문가체계의 연계)

  • 이형석;배상호;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.137-146
    • /
    • 2001
  • Route selection needs the analysis function of GSIS to analyze and manipulate a lot of spatial information efficiently. Therefore, it needs the linkage of system requiring the knowledge and the experience of experts as a method that can estimate each quantitative route for an efficient route selection. In this study, the route selection model through construction and analysis procedure of position information using GSIS were presented, and route selection system linked with expert system was developed. This system is easy to be used and managed for presenting route alignment according to conditions as a graphic user interface environmental window system by applying three tiers based object-oriented method. Using GSIS, the various information required for route selections in database was constructed, the characteristics of subject area by executing three-dimensional terrain analysis was grasped effectively, and the control point through buffering, overlay and location operation was extracted. Three alternative routes between a beginning point and an end point inputted by route selection system were selected. Therefore, the applications of the route selection system are presented by applying this system to the real study area.

  • PDF

DOES LACK OF TOPOGRAPHIC MAPS LIMIT GEO-SPATIAL HYDROLOGY ANALYSYS?

  • Gangodagamage, Chandana;Flugel, Wolfgang;Turrel, Dr.Hagh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.82-84
    • /
    • 2003
  • Watershed boundaries and flow paths within the watershed are the most important factors required in watershed analysis. Most often the derivation of watershed boundaries and stream network and flow paths is based on topographical maps but spatial variation of flow direction is not clearly understandable using this method. Water resources projects currently use 1: 50, 000-scale ground survey or aerial photography-based topographical maps to derive watershed boundary and stream network. In basins, where these maps are not available or not accessible it creates a real barrier to watershed geo-spatial analysis. Such situations require the use of global datasets, like GTOPO30. Global data sets like ETOPO5, GTOPO30 are the only data sets, which can be used to derive basin boundaries and stream network and other terrain variations like slope aspects and flow direction and flow accumulation of the watershed in the absence of topographic maps. Approximately 1-km grid-based GTOPO 30 data sets can derive better outputs for larger basins, but they fail in flat areas like the Karkheh basin in Iran and the Amudarya in Uzbekistan. A new window in geo-spatial hydrology has opened after the launching of the space-borne satellite stereo pair of the Terra ASTER sensor. ASTER data sets are available at very low cost for most areas of the world and global coverage is expected within the next four years. The DEM generated from ASTER data has a reasonably good accuracy, which can be used effectively for hydrology application, even in small basins. This paper demonstrates the use of stereo pairs in the generation of ASTER DEMs, the application of ASTER DEM for watershed boundary delineation, sub-watershed delineation and explores the possibility of understanding the drainage flow paths in irrigation command areas. All the ASTER derived products were compared with GTOPO and 1:50,000-based topographic map products and this comparison showed that ASTER stereo pairs can derive very good data sets for all the basins with good spatial variation, which are equal in quality to 1:50,000 scale maps-based products.

  • PDF

An Experimental Study on Pairwise Key Pre-distribution Schemes of Wireless Sensor Networks Considering 3D Environments (3D 환경을 고려한 무선 센서 네트워크의 키 사전 분배 기법 실험 연구)

  • Yun, Hyemin;Shin, Sooyeon;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.975-980
    • /
    • 2020
  • To protect wireless sensor networks (WSNs), various key distribution and management schemes have been proposed. However, most of them conducted simulations and experiments for performance evaluation by considering only the two-dimensional (2D) environments. In this paper, we investigate the effect of real-world three-dimensional (3D) topographic features on the key pre-distribution schemes for WSNs. For this purpose, we analyze and compare the performance of three pairwise key pre-distribution schemes in 2D and 3D environments: full pairwise (FP), random pairwise (RP), and full and random pairwise (FRP) schemes. For the experiments, we employ a network simulator NS-3 and 3D graphic tools such as Blender and Unity. As a result, we confirm that there was a difference in the performance of each scheme according to the actual 3D terrain and that the location-based FRP that considers deployment errors, has the highest efficiency in many aspects.

3D Coverage Analysis of LTE Network for UTM Services Considering Actual Terrain and Base Station Layouts (실제 지형과 기지국 배치를 고려한 UTM 통신을 위한 LTE 통신망 3차원 커버리지 분석)

  • Jang, Minseok;Kim, Daeho;Kim, Hee Wook;Jung, Young-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2022
  • Unmanned aircraft system traffic management (UTM) service for the safe operation of unmanned aerial vehicles (UAV) such as drones using commercial communication networks such as long-term evolution (LTE) and 5G in low-altitude areas of 150m or less is being studied in several countries. In this paper, whether it is possible to secure three-dimensional (3D) coverage for UTM service using the existing LTE cellular network for terrestrial usersis analyzed through simulations. The practicality in the real environment is confirmed by performing performance analysis in the actual topographical environment and the LTE base station layouts in Korea. According to the analysis results, as the altitude increases, the number of line-of-sight (LOS) interference base stations increases, resulting in a worse signal to interference plus noise ratio (SINR), but coverage is secured except for the limited areas within 150m. was confirmed to be possible. In addition, it is confirmed that a significant proportion of outage areas could be reduced by placing a small number of additional base stations for the outage area.

A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon

  • Lee, Do-Hyung;Kil, Sung-Ho;Lee, Su-Been
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.441-450
    • /
    • 2021
  • Background and objective: The purpose of study is to analyze the three-dimensional (3D) structure by creating a 3D model for green spaces in a park using unmanned aerial vehicle (UAV) images. Methods: After producing a digital surface model (DSM) and a digital terrain model (DTM) using UAV images taken in Mureung Park in Chuncheon-si, we generated a digital tree height model (DHM). In addition, we used the mean shift algorithm to test the classification accuracy, and obtain accurate tree height and volume measures through field survey. Results: Most of the tree species planted in Mureung Park were Pinus koraiensis, followed by Pinus densiflora, and Zelkova serrata, and most of the shrubs planted were Rhododendron yedoense, followed by Buxus microphylla, and Spiraea prunifolia. The average height of trees measured at the site was 7.8 m, and the average height estimated by the model was 7.5 m, showing a difference of about 0.3 m. As a result of the t-test, there was no significant difference between height values of the field survey data and the model. The estimated green coverage and volume of the study site using the UAV were 5,019 m2 and 14,897 m3, respectively, and the green coverage and volume measured through the field survey were 6,339 m2 and 17,167 m3. It was analyzed that the green coverage showed a difference of about 21% and the volume showed a difference of about 13%. Conclusion: The UAV equipped with RTK (Real-Time Kinematic) and GNSS (Global Navigation Satellite System) modules used in this study could collect information on tree height, green coverage, and volume with relatively high accuracy within a short period of time. This could serve as an alternative to overcome the limitations of time and cost in previous field surveys using remote sensing techniques.

A Experimental Study on the 3-D Image Restoration Technique of Submerged Area by Chung-ju Dam (충주댐 수몰지구의 3차원 영상복원 기법에 관한 실험적 연구)

  • 연상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • It will be a real good news fer the people who were lost their hometown by the construction of a large dam to be restored to the farmer state. Focused on Cheung-pyung around where most part were submerged by the Chungju large Dam founded in eurly 1980s, It used remote sensing image restoration Technique in this study in order to restore topographical features before the flood with stereo effects. We gathered comparatively good satellite photos and remotely sensed digital images, then its made a new fusion image from these various satellite images and the topographical map which had been made before the water filled by the DAM. This task was putting together two kinds of different timed images. And then, we generated DEM including the outskirts of that area as matching current contour lines with the map. That could be a perfect 3D image of test areas around before when it had been water filled by making perspective images from all directions included north, south, east and west, fer showing there in 3 dimensions. Also, for close range visiting made of flying simulation can bring to experience their real space at that time. As a result of this experimental task, it made of new fusion images and 3-D perspective images and simulation live images by remotely sensed photos and images, old paper maps about vanished submerged Dam areas and gained of possibility 3-D terrain image restoration about submerged area by large Dam construction.

Steep Slope Management System integrated with Realtime Monitoring Information into 3D Web GIS (상시계측센서정보와 3차원 Web GIS를 융합한 급경사지관리시스템)

  • Chung, Dong Ki;Sung, Jae Ryeol;Lee, Dong Wook;Chang, Ki Tae;Lee, Jin Duk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.9-17
    • /
    • 2013
  • Geospatial information data came recently in use to build the location-based service in various fields. These data were shown via a 2-D map in the past but now can be viewed as a 3-D map due to the dramatic evolution of IT technology, thus improving efficiency and raising practicality to a greater extent by providing a more realistic visualization of the field. In addition, many previous GIS applications have been provided under desktop environment, limiting access from remote sites and reducing its approachability for less experienced users. The latest trend offers service with web-based environment, providing efficient sharing of data to all users, both unknown and specific internal users. Therefore, real-time information sensors that have been installed on steep slopes are to be integrated with 3-D geospatial information in this study. It is also to be developed with web-based environment to improve usage and access. There are three steps taken to establish this system: firstly, a 3-D GIS database and 3-D terrain with higher resolution aerial photos and DEM (Digital Elevation Model) have been built; secondly, a system architecture was proposed to integrate real-time sensor information data with 3D Web-based GIS; thirdly, the system has been constructed for Gangwon Province as a test bed to verify the applicability.

Study on the Control and Topographical Recognition of an Underwater Rubble Leveling Robot for Port Construction (항만공사용 사석 고르기 수중로봇의 제어 및 지형인식에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Jin-Hyung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2018
  • When underwater rubble leveling work is carried out by a robot, real-time information on the topography around the robot is required for remote control. If the topographical information with respect to the current position of the robot is displayed as a 3D graphic image, it allows the operator to plan the working schedules and to avoid accidents like rollovers. Up until now, the topographical recognition was conducted by multi-beam sonars, which were only used to assess the quality before and after the work and could not be used to provide real-time information for remote control. This research measures the force delivered to the bucket which presses the mound to determine whether contact is made or not, and the contact position is calculated by reading the cylinder length. A variable bang-bang control algorithm is applied to control the heavy robot arms for the positioning of the bucket. The proposed method allows operators to easily recognize the terrain and intuitively plan the working schedules by showing relatively 3-D gratifications with respect to the robot body. In addition, the operating patterns of a skilled operator are programmed for raking, pushing, moving, and measuring so that they are automatically applied to the underwater rubble leveling work of the robot.

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.