DOES LACK OF TOPOGRAPHIC MAPS LIMIT GEO-SPATIAL HYDROLOGY ANALYSYS?

  • Gangodagamage, Chandana (B Sc. (Eng.), PG Dip (Remote Sensing) AM (IESL) International Water Management Institute) ;
  • Flugel, Wolfgang (International Water Management Institute International Water Management Institute) ;
  • Turrel, Dr.Hagh (International Water Management Institute International Water Management Institute)
  • Published : 2003.11.03

Abstract

Watershed boundaries and flow paths within the watershed are the most important factors required in watershed analysis. Most often the derivation of watershed boundaries and stream network and flow paths is based on topographical maps but spatial variation of flow direction is not clearly understandable using this method. Water resources projects currently use 1: 50, 000-scale ground survey or aerial photography-based topographical maps to derive watershed boundary and stream network. In basins, where these maps are not available or not accessible it creates a real barrier to watershed geo-spatial analysis. Such situations require the use of global datasets, like GTOPO30. Global data sets like ETOPO5, GTOPO30 are the only data sets, which can be used to derive basin boundaries and stream network and other terrain variations like slope aspects and flow direction and flow accumulation of the watershed in the absence of topographic maps. Approximately 1-km grid-based GTOPO 30 data sets can derive better outputs for larger basins, but they fail in flat areas like the Karkheh basin in Iran and the Amudarya in Uzbekistan. A new window in geo-spatial hydrology has opened after the launching of the space-borne satellite stereo pair of the Terra ASTER sensor. ASTER data sets are available at very low cost for most areas of the world and global coverage is expected within the next four years. The DEM generated from ASTER data has a reasonably good accuracy, which can be used effectively for hydrology application, even in small basins. This paper demonstrates the use of stereo pairs in the generation of ASTER DEMs, the application of ASTER DEM for watershed boundary delineation, sub-watershed delineation and explores the possibility of understanding the drainage flow paths in irrigation command areas. All the ASTER derived products were compared with GTOPO and 1:50,000-based topographic map products and this comparison showed that ASTER stereo pairs can derive very good data sets for all the basins with good spatial variation, which are equal in quality to 1:50,000 scale maps-based products.

Keywords