• Title/Summary/Keyword: rational cohomology

Search Result 5, Processing Time 0.019 seconds

ON THE RATIONAL COHOMOLOGY OF MAPPING SPACES AND THEIR REALIZATION PROBLEM

  • Abdelhadi Zaim
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1309-1320
    • /
    • 2023
  • Let f : X → Y be a map between simply connected CW-complexes of finite type with X finite. In this paper, we prove that the rational cohomology of mapping spaces map(X, Y ; f) contains a polynomial algebra over a generator of degree N, where N = max{i, πi(Y)⊗ℚ ≠ 0} is an even number. Moreover, we are interested in determining the rational homotopy type of map(𝕊n, ℂPm; f) and we deduce its rational cohomology as a consequence. The paper ends with a brief discussion about the realization problem of mapping spaces.

INVARIANT RINGS AND DUAL REPRESENTATIONS OF DIHEDRAL GROUPS

  • Ishiguro, Kenshi
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.299-309
    • /
    • 2010
  • The Weyl group of a compact connected Lie group is a reflection group. If such Lie groups are locally isomorphic, the representations of the Weyl groups are rationally equivalent. They need not however be equivalent as integral representations. Turning to the invariant theory, the rational cohomology of a classifying space is a ring of invariants, which is a polynomial ring. In the modular case, we will ask if rings of invariants are polynomial algebras, and if each of them can be realized as the mod p cohomology of a space, particularly for dihedral groups.

MODULAR INVARIANTS UNDER THE ACTIONS OF SOME REFLECTION GROUPS RELATED TO WEYL GROUPS

  • Ishiguro, Kenshi;Koba, Takahiro;Miyauchi, Toshiyuki;Takigawa, Erika
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.207-218
    • /
    • 2020
  • Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group G with a maximal torus T is expressed as the ring of invariants, H*(BG; ℚ) ≅ H*(BT; ℚ)W(G), which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod p reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups Sp(n) and for the alternating groups An as the subgroup of W(SU(n)). We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the mod p cohomology of a space. For n = 3, 4, the rings under a conjugate of W(Sp(n)) are shown to be polynomial, and for n = 6, 8, they are non-polynomial. The structures of H*(BTn-1; 𝔽p)An will be also discussed for n = 3, 4.

DOUBLE LINES IN THE QUINTIC DEL PEZZO FOURFOLD

  • Kiryong Chung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.485-494
    • /
    • 2023
  • Let Y be the quintic del Pezzo 4-fold defined by the linear section of Gr(2, 5) by ℙ7. In this paper, we describe the locus of double lines in the Hilbert scheme of coincs in Y. As a corollary, we obtain the desigularized model of the moduli space of stable maps of degree 2 in Y. We also compute the intersection Poincaré polynomial of the stable map space.

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.