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ON THE RATIONAL COHOMOLOGY OF MAPPING SPACES

AND THEIR REALIZATION PROBLEM

Abdelhadi Zaim

Abstract. Let f : X → Y be a map between simply connected CW-

complexes of finite type with X finite. In this paper, we prove that the ra-
tional cohomology of mapping spaces map(X,Y ; f) contains a polynomial

algebra over a generator of degree N , where N = max{i, πi(Y )⊗Q ̸= 0} is

an even number. Moreover, we are interested in determining the rational
homotopy type of map(Sn,CPm; f) and we deduce its rational cohomol-

ogy as a consequence. The paper ends with a brief discussion about the
realization problem of mapping spaces.

1. Introduction

In this paper all spaces are assumed to be simply connected of the homotopy
type of a CW-complex and are of finite type over Q, i.e., have finite dimensional
rational cohomology in each degree.

Given two topological spacesX and Y , let map(X,Y ) (resp. map∗(X,Y )) de-
note the space of all free (resp. pointed) continuous functions with the compact-
open topology. The space map(X,Y ) is generally disconnected with path-
components corresponding to the set of free homotopy classes of maps. We
write map(X,Y ; f) for the path-component containing a given map f : X → Y .
Whenever X is a finite CW-complex and Y is a CW-complex of finite type over
Q, then any path component of both map(X,Y ) and map∗(X,Y ) are nilpotent
CW-complexes of finite type over Q and in particular, it can be rationalized in
the classical sense [10].

A fundamental problem is to determine the rational homotopy type and the
rational cohomology of the mapping spaces map(X,Y ; f). Generally speak-
ing about cohomology is delicate invariant and difficult to compute. We use
methods from rational homotopy theory to compute these groups. As is well
known, the homotopy theory of rational spaces, i.e., spaces whose homotopy
groups are vector spaces over Q, is equivalent to the homotopy theory of min-
imal differential graded commutative algebras over Q. More precisely, there
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is an equivalence between the homotopy category of rational spaces and the
homotopy category of minimal algebras. Similarly, the rational homotopy type
of a continuous map between spaces is the same as the algebraic homotopy
class of the corresponding morphism between models.

The study of the rational homotopy type of map(X,Y ; f) was initiated by A.
Haefliger [8] who describes its Sullivan model. Following his work, J. M. Møller
and M. Raussen determine the rational homotopy type of the components of
map(X,Sn) in terms of the cohomology algebra H∗ (X;Q) and the Sullivan
model of Sn [15]. Recently, the rational homotopy type of mapping spaces
seem to be well described in terms of the theory of L∞-algebra [2,3]. By using
this machinery and others, U. Buijs and A. Murillo have explicitly described
the rational homotopy of free and pointed mapping spaces between spheres
[4]. In their foundational paper Rationalized evaluation subgroups of a map I:
Sullivan models, derivations and G-sequences [12] (see also [11]), G. Lupton
and S. B. Smith gave an elegant formula to determine the rational homotopy
type of mapping spaces in terms of derivations. Inspired by their work, we
prove the following results.

Theorem 1.1. Let f : X → Y be a map between simply connected CW-
complexes of finite type in which X is finite. Moreover, assume that N =
max {i, πi (Y )⊗Q ̸= 0} is an even number. Then, the rational cohomology
algebra of map(X,Y ; f) contains a polynomial algebra over a generator of degree
N .

Moreover, we determine the rational homotopy type of map(X,Y ; f) in the
particular case of choosing X = Sn and Y = CPm, and we prove the following
result.

Theorem 1.2. The mapping space map(Sn,CPm; f) has the following rational
homotopy type:

• CPm, if n odd and n ≥ 2m+ 1,
• CPm ×K (Q, 2m− n+ 1), if n odd and n < 2m+ 1,
• CPm−n

2 × S2m+1, if n even and n < 2m+ 1,
• CPm, if n even and n > 2m+ 1.

As a consequence, we compute the rational cohomology of the mapping space
map(Sn,CPm; f). We also deduce the rational homotopy type of the pointed
mapping spaces map∗(Sn,CPm; f).

We mention that Theorem 1.2 might be known, or easily deduced by special-
ists. However, to my knowledge, it has not been made explicit in the literature.

The paper is organized as follows. In Section 2 we review some basic facts
for the theory of Sullivan minimal models and derivations. Section 3 contains
the proof of Theorem 1.1, Theorem 1.2 and their consequences. Motivated by
our results, we conclude this paper with a brief discussion about the realization
problem of mapping spaces.
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2. Sullivan minimal models and derivations

This section cannot provide and is not intended to give an introduction to
the theory of Sullivan minimal models. We expect the reader to have gained
a certain familiarity with necessary concepts for example from [7]. We merely
recall some tools and aspects which play a larger role in the paper. For our
purposes, we recall the following.

Definition. A commutative differential graded algebra (cdga) is a graded
algebra A = ⊕i≥0A

i with a differential d : Ai → Ai+1 such that d2 = 0,

xy = (−1)
ij
yx, and d (xy) = d (x) y + (−1)

i
xd (y) for all x ∈ Ai and y ∈ Aj .

A cdga (A, d) is called simply connected if H0(A, d) = Q and H1(A, d) = 0. Let
f : (A, d) → (B, d) be a morphism of cdga’s. It is called a quasi-isomorphism
if H∗(f) : H∗(A, d) → H∗(B, d) is an isomorphism.

A simply connected commutative graded algebra A is free if it is of the form

ΛV = S(V even)⊗ E(V odd),

where V even = ⊕i≥1V
2i and V odd = ⊕i≥1V

2i+1. Moreover if V admits a homo-
geneous basis {xi}i∈I indexed by a well ordered set I such dxj ∈ Λ({xi})i<j ,
we say that (ΛV, d) is a Sullivan algebra. Further, it is said to be minimal
if dV ⊂ Λ≥2V . If there is a quasi-isomorphism f : (ΛV, d) → (A, d), where
(ΛV, d) is a Sullivan minimal algebra, then we say that (ΛV, d) is a Sullivan
minimal algebra of (A, d).

To each simply connected topological space X of finite type, D. Sullivan
associates in a functorial way a cdga APL(X) of piecewise linear forms on X
such that H∗(APL(X)) ∼= H∗(X;Q) [18]. A Sullivan minimal model of X is a
Sullivan minimal model of APL(X). Moreover, the rational homotopy type ofX
is completely determined by its Sullivan minimal model (ΛV, d). In particular,
there are isomorphisms

H∗ (ΛV, d) ∼= H∗ (X;Q) as commutative graded algebras,

V ∼= π∗(X)⊗Q as graded vector spaces.

Sullivan minimal models behave nicely with respect to fibrations. Recall that

the KS-model for a rational fibration F → E
p→ B is a short exact sequence:

(ΛW,dW ) → (ΛW ⊗ ΛV,D) → (ΛV, dV )

of cdga, with (ΛW,dW ) and (ΛV, dV ) are the Sullivan minimal models for
B and F , respectively ([7], Proposition 15.5). The differential D satisfies:
D(w) = dW (w) for w ∈ W and D(v) − dV (v) ∈ Λ+W ⊗ ΛV for v ∈ V . The
cdga (ΛW ⊗ ΛV,D) is a Sullivan model for the total space E but is not in
general minimal.

Definition. A fibration F → E
p→ B is called rationally trivial when

E ≃Q B × F,
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or equivalently if the differentialD of the total space E satisfies: D(w) = dW (w)
and D(v) = dV (v).

Now, we recall the following definition which we use later.

Definition. Let φ : (ΛW,dW ) → (ΛV, dV ) be a morphism of cdga’s. Define a
φ-derivation θ of degree n to be a linear map θ : ΛW → ΛV that reduces degree

by n such that θ (xy) = θ (x)φ (y)+ (−1)
n|x|

φ (x) θ (y). Let Dern (ΛW,ΛV ;φ)
denote the vector space of φ-derivations of degree n for n > 0. When n =
1 we require additionally that dV ◦ θ = −θ ◦ dW . Define a linear map δ :
Dern (ΛW,ΛV ;φ) → Dern−1 (ΛW,ΛV ;φ) by δ (θ) = dV ◦ θ − (−1)

n
θ ◦ dW .

Note that (Der∗ (ΛW,ΛV ;φ) , δ) := ⊕nDern (ΛW,ΛV ;φ) is a chain complex.
There is an isomorphism of graded vector spaces

Der∗ (ΛW,ΛV ;φ) ∼= Hom∗ (W,ΛV ) .

In view of the preceding remark, we denote by (y, x) the unique φ-derivation
sending an element y ∈ W to x ∈ ΛV and the other generators to zero.

Now, we recall how to determine the rational homotopy type of mapping
spaces. The following result is due to G. Lupton and S. B. Smith (see [12],
Theorem 2.1).

Theorem 2.1. Let f : X → Y be a map between simply connected CW-
complexes of finite type with X finite and φ : (ΛW,dW ) → (ΛV, dV ) its KS-
model. Then for i ≥ 2,

πi (map (X,Y ; f))⊗Q ∼= Hi (Der (ΛW,ΛV ;φ)) as graded vector spaces,

and also

πi (map∗ (X,Y ; f))⊗Q ∼= Hi

(
Der

(
ΛW, Λ̃V ; φ̃

))
as graded vector spaces,

where φ̃ : ΛW → Λ̃V is the dga map which agrees with φ in positive degrees
and vanishes in degree zero.

Notice that the same result was proved in [3] by U. Buijs and A. Murillo.
As an overriding hypothesis, we assume that all spaces appearing in this

paper are rational simply connected.

3. Proofs of our results

For the proofs, we use the machinery of rational homotopy theory as de-
scribed in Section 2. We use more precisely the theory of Sullivan minimal
models and the description of the rational homotopy groups of mapping spaces
in terms of derivations (see Theorem 2.1).

The following result plays a key role in the proof of our results.
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Proposition 3.1. Let f : X → Y be a map in which X is finite and Y is
π-finite (dim π∗ (Y )⊗Q < ∞). Further, if

πi (Y )⊗Q =

{
0 for i > M ,
Qr for i = M.

Then, we obtain

πi (map(X,Y ; f))⊗Q =

{
0 for i > M ,
Qr for i = M.

Proof. Let φ : (ΛW,dW ) → (ΛV, dV ) be the KS-model of f . Further, since
Hom(W,Q) ∼= π∗ (Y )⊗Q and from our assumption, we get that W is concen-
trated in degrees ≤ M and dim WM = r. On other hand, we see that

Der∗ (ΛW,ΛV ;φ) ∼= Hom(W,ΛV ) .

It follows that Der∗ (ΛW,ΛV ;φ) is concentrated in degrees ≤ M . Therefore,
we can deduce

Hi (Der (ΛW,ΛV ;φ)) = 0 for i > M.

By applying Theorem 2.1, we obtain

(1) πi (map (X,Y ; f))⊗Q ∼= 0 for i > M.

Furthermore, in degree M , for each θ ∈ Hom(WM ,Q), we obtain a derivation
in Der∗(ΛW,ΛV ;φ) of degree M by setting θ(WM ) = 1 and extending as a
derivation. Any such derivation is a δ-cycle, since the element of WM , as the
last stage of generators, do not occur in the differential of any other generators.
There are no non-zero boundaries of degree M , since Der∗(ΛW,ΛV ;φ) is zero
in degree M +1 and higher. So the vector space WM persists to homology and
we have

HM (Der (ΛW,ΛV ;φ)) ∼= Hom
(
WM ,Q

)
.

Thus from Theorem 2.1, we deduce that

(2) πM (map (X,Y ; f))⊗Q ∼= Hom
(
WM ,Q

)
.

Now, we combine (1) and (2) to achieve the proof. □

This result, up to shifting degree, is due to G. Lupton and S. B. Smith for
the case X = Y and f = id (see [14], Proposition 2.3).

Now, we are ready to prove our main first result.

Proof of Theorem 1.1. First, since π∗ (Y )⊗Q is finite dimensional, thus

π∗ (map (X,Y ; f))⊗Q

is also finite dimensional by applying Proposition 3.1. Next, let (ΛU, d) be the
Sullivan minimal model of map (X,Y ; f) with U is finite dimensional. So, by
using our assumption and again Proposition 3.1 we can write

U = U≤N−1 ⊕ UN ,
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where UN denotes the graded vector space spanned by elements of degrees N .
Second, we appeal to some results of S. Halperin concerning elliptic Sullivan
minimal models. To any Sullivan minimal model (ΛV, d) with V is finite di-
mensional, there is an associated pure minimal model, denoted (ΛV, dσ), which
is defined by adjusting the differential d to dσ as follows: We set dσ = 0 on
each even degree generator of V , and on each odd degree generator v ∈ V , we
set dσ (v) equal to the part of d (v) contained in Λ (V even). One checks that
this defines a differential dσ on ΛV, and thus we obtain a pure Sullivan model
(ΛV, dσ). Applying all this to the Sullivan minimal model (Λ(U≤N−1⊕UN ), d).
For degree reasons and an easy computation shows that every element x in UN

is a non-exact d-cocycle. So for each n ≥ 1, we obtain

[xn] is non null in H∗ (Λ(U≤N−1 ⊕ UN ), dσ) .

Thus Proposition 32.4 in [7] shows that H∗ (ΛU, d) contains a polynomial al-
gebra Q [x], where |x| = N . □

Note that the condition max π∗ (Y ) ⊗ Q even in Theorem 1.1 is sufficient
but not necessary. For example:

Example 3.2. Let n be an odd number. From Theorem 1.2, it follows that

map(Sn,CPm; f) ≃Q CPm ×K (Q, 2m− n+ 1) , if n < 2m+ 1.

Now by applying the Kunneth formula, we deduce that the rational cohomology
of map(Sn,CPm; f) contains a polynomial algebra over degree 2m−n+1 though
max π∗ (Y )⊗Q = max π∗ (CPm)⊗Q = 2m+ 1.

Even if max π∗ (Y ) ⊗ Q is an even number, it may hold that the pointed
mapping space map∗(X,Y ; f) does not contains a polynomial algebra.

Example 3.3. Let us consider the mapping space map∗(K(Q, 3),K(Q, 6); f).
We denote by

φ : (Λ(y6), 0) → (Λ(z3), 0)

the KS-model of f : K(Q, 3) → K(Q, 6). In both models, subscripts denote
degrees. For degree reasons, we have

Der∗(ΛW, Λ̃V ; φ̃) = Q⟨(y, z)⟩.

Furthermore, it holds that

Hi(Der(ΛW, Λ̃V ; φ̃)) ∼= πi(map∗(K(Q, 3),K(Q, 6); f))⊗Q
∼= Q

in degree 3 and zero otherwise. So, we must have

map∗(K(Q, 3),K(Q, 6); f)) ≃Q K(Q, 3).

Finally, we conclude that map∗(K(Q, 3),K(Q, 6); f) does not contains a poly-
nomial algebra.
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To phrase our next result, we recall a well known numerical invariant of the
homotopy type of spaces. The rational Lusternik-Schnirelmann category of X,
cat0 (X), is the least integer n such that X can be covered by (n+ 1) open
subsets contractible in X. This is an invariant of the rational homotopy type
of X, and this and its elementary properties are presented in detail in [5, 7].

Corollary 3.4. Under the hypothesis of Theorem 1.1, map(X,Y ; f) has infi-
nite rational Lusternik-Schnirelmann category.

Proof. From Theorem 1.1, we deduce that map(X,Y ; f) has infinite rational
cohomology. Next, we use ([7], Proposition 32.4) to complete the proof. □

We next describe a situation in which we can be assured of a trivial fibration.
It will be a key point in the proof of Theorem 1.2. Recall that fibrations with
fibre in the homotopy type of F are obtained, up to fibre homotopy equivalence,
as a pull-back of the universal fibration [17]

F → Baut∗1 (F )
p∞→ Baut1 (F ) ,

where aut1 (F ) := map(F, F ; id), aut∗1 (F ) := map∗ (F, F ; id) and B is the
Dold-Lashof functor from monoids to topological spaces [6].

Proposition 3.5. Let ξ : K (Q, n) → E
p→ B be a fibration of simply connected

CW-complexes. The following are equivalent:

(1) ξ is trivial,
(2) Hn+1 (B;Q) = 0.

Proof. Let h : B → Baut1 (K (Q, n)) denote the classifying map of the fibration
ξ which make the following homotopy commutative diagram:

K (Q, n) K (Q, n)

E Baut∗1 (K (Q, n))

B Baut1 (K (Q, n))

p p∞

h

Now, it is well known that Baut1 (K (Q, n)) ≃Q K (Q, n+ 1) (see [9], Example
10). Moreover, we see that the rational homotopy set of classifying maps from
a space B is giving as (see for example [1], Example 4.1)

[B,Baut1 (K (Q, n))] = [B,K (Q, n+ 1)]

= Hn+1 (B;Q) .

This means that the classifying map h is trivial if and only if Hn+1 (B;Q) =
0, as needed. □
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The KS-model of a rational fibration is the main technical tool that is used
in the sequel. We now give an algebraic description of condition (1) above. It

is easy to see that the fibration ξ : K (Q, n) → E
p→ B is trivial if and only if

its KS-model is given by

(ΛW,dW ) → (ΛW ⊗ Λ(vn), D) → (Λ(vn), 0),

where D(w) = dW (w) for w ∈ W and D(vn) = 0.
In the remainder of this section, we will use

map∗(X,Y ; f) → map(X,Y ; f)
ω→ Y

to denote the evaluation fibration at the base point x0 ∈ X, ω (g) = g (x0).
We turn now our attention to the rational homotopy type of mapping spaces.

Proof of Theorem 1.2. To proof our theorem, we will denote the KS-model of
f : Sn → CPm by

φ : (ΛW,dW ) → (ΛV, dV ) .

For degree reasons, we will distinguish different cases.
Case 1. n odd.
Case 1.1: n ≥ 2m+ 1.
The KS-model φ : (Λ (x2, y2m+1) , dW ) → (Λ (zn) , 0) is given on generators by
φ (x) = 0 and φ (y) = αz for some α ∈ Q (it may be zero). Here, subscripts
indicating degrees and the differential dW is defined as follows: dW (x) = 0
and dW (y) = xm+1. So, the vector space Der∗ (ΛW,ΛV ;φ) of derivations
of positive degree is spanned by (x, 1) and (y, 1). Direct computation shows
that the differential δ in Der∗ (ΛW,ΛV ;φ) is given by δ (x, 1) = δ (y, 1) = 0.
Then, the homology is of rank 1 in degrees 2 and 2m+ 1, and zero otherwise.
Thus, map(Sn,CPm; f) has homotopy groups concentrated in degrees 2 and
2m+1 (the correct homotopy groups as CPm). Hence, by using the evaluation
fibration

map∗ (Sn,CPm; f) → map (Sn,CPm; f)
ω→ CPm,

we deduce that

map (Sn,CPm; f) ≃Q CPm.

Case 1.2: n < 2m+ 1.
By using the same notation as above, a standard check shows that φ (x) =
φ (y) = 0. In the style of the above, the vector space Der∗ (ΛW,ΛV ;φ) is
spanned by: (x, 1) , (y, 1) and (y, z). Moreover, we have

δ (x, 1) = δ (y, 1) = δ (y, z) = 0.

It follows that H∗ (Der (ΛW,ΛV ;φ)) has rank 1 in degrees 2, 2m − n + 1 and
2m + 1, and is trivial in all other degrees. Hence from Theorem 2.1, we can
write the Sullivan model of map(Sn,CPm; f) as

(Λ (a2, b2m−n+1, c2m+1) , D) .
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Now, the KS-model of the evaluation fibration gives that Da = 0 and Dc =
am+1. Further, to determine the differential D on b, we can construct the
following KS-model

(Λ (a2, c2m+1) , dW ) → (Λ (a2, b2m−n+1, c2m+1) , D) → (Λ (b2m−n+1) , 0)

whose geometric realization is

ξ : K(Q, 2m− n+ 1) → map (Sn,CPm; f) → CPm.

Clearly, we have H2m−n+2 (CPm;Q) = 0. Then, from Proposition 3.5, we
deduce that ξ is trivial and further Db = 0. Consequently, we have proved that

map (Sn,CPm; f) ≃Q CPm ×K (Q, 2m− n+ 1) .

Case 2. n even.
Let denote the KS-model of f : Sn → CPm by

φ : (Λ (x2, y2m+1) , dW ) → (Λ (un, v2n−1) , dV ) ,

where dW (x) = 0, dW (y) = xm+1, dV (u) = 0 and dV (v) = u2.
Case 2.1: 2 < n < 2m+ 1.
Without loss of generality, we have φ (x) = φ (y) = 0. Furthermore, a basis for
Der∗ (ΛW,ΛV ;φ) is spanned by (x, 1) and (y, ur0vr1) for some r0, r1 ≥ 0. It
is clear that the only non-bounding δ-cycles are (x, 1), (y, 1) and (y, u). This
implies that the Sullivan model of map(Sn,CPm; f) takes the form

(Λ (a2, b2m−n+1, c2m+1) , D) ,

where Da = 0 and Dc = am+1. It remains to determine the differential Db.
Since H2m−2n+2 (CPm;Q) ̸= 0 and by using an argument similar as before,
we get that Db = am−n

2 +1. Now, make a change of KS-basis, replacing c by
c = c− a

n
2 b. This gives a quasi-isomorphic KS-extension(

Λ (a, b, c) , D
)
→ (Λ (a, b, c) , D)

in which Da = Da, Db = Db and Dc = 0. Clearly, it follows that

map (Sn,CPm; f) ≃Q CPm−n
2 × S2m+1.

Case 2.2: n > 2m+ 1.
In this case a Sullivan model of map (Sn,CPm; f) is again computed via the
methods above. Note that the details are very similar with some minor differ-
ences, due to the fact that the derivation (y, u) has negative degree and this
not contribute to homology. A straightforward computation shows that

πi(map (Sn,CPm; f))⊗Q ∼= Q in degrees 2 and 2m+ 1.

Finally, by using the evaluation fibration, we deduce that

map (Sn,CPm; f) ≃Q CPm.
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Case 2.3: n = 2.
Here returning to the KS-model φ, we have φ (x) = u and φ (y) = um−1v.
Now, it is evident to see that

D(x, 1) = −(m+ 1)(y, um),

it follows that

D
[
(x, 1) + (m+ 1)(y, um−2v)

]
= 0.

A straightforward computation shows that the homology of Der∗ (ΛW,ΛV ;φ)
is concentrated in degrees 2, 2m− 1 and 2m+1. Next, to avoid the repetition,
an arguments similar to those explained in Case 2.1 prove that

map
(
S2,CPm; f

)
≃Q CPm−1 × S2m+1.

Summarizing all of the above cases finishes the proof of our theorem. □

We finish this section with two immediate consequences of Theorem 1.2.

Corollary 3.6. The rational cohomology of map (Sn,CPm; f) is

• Q [a2] /a
m+1, if n odd and n ≥ 2m+ 1,

• Q [a2] /a
m+1 ⊗Q [b2m−n+1], if n odd and n < 2m+ 1,

• Q [a2] /a
m−n

2 +1 ⊗ Λ (b2m+1), if n even and n < 2m+ 1,
• Q [a2] /a

m+1, if n even and n > 2m+ 1.

Proof. It follows directly from Kunneth formula and Theorem 1.2. □

By taking into account Theorem 1.2 and the KS-model of the evaluation
fibration

map∗ (Sn,CPm; f) → map (Sn,CPm; f)
ω→ CPm,

we can immediately deduce the following result.

Corollary 3.7. The mapping space map∗ (Sn,CPm; f) has the rational homo-
topy type of

• *, if n odd and n ≥ 2m+ 1,
• K (Q, 2m− n+ 1), if n odd and n < 2m+ 1,
• K

(
Q,m− n

2

)
, if n even and n < 2m+ 1,

• *, if n even and n > 2m+ 1.

We note that Corollary 3.7 can also be obtained by using Theorem 2.1.

4. Realization problem of mapping spaces

Mapping spaces are at the foundations of homotopy theory and appear in
the literature dating back, at least, to Hurewicz’s definition of the homotopy
groups in the 1930s. These spaces were studied by several authors and have
led many interesting results in homotopy theory (see [16] for a survey). With
this long and extensive history, it is surprising that the question of realizability
of mapping spaces has never been addressed. We cannot resist making the
following question.
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Question 4.1. Is every simply connected CW-complex Z can be realized as
mapping spaces map(X,Y ) for some simply connected CW-complexes X and
Y ?

If X is contractible, i.e., X ≃Q ∗, we get map(X,Y ; f) ≃Q Y . So in par-
ticular, our question is trivial if we do not place any restrictions on the space
X.

Now, we examine various observations related to the realizability of mapping
spaces. First, by Theorem 1.1, we show that every finite CW-complex Z cannot
be realized as map(X,Y ; f) when max π∗ (Y )⊗Q is an even number. Further,
Theorem 1.2 suggests a several realization results. It would be interesting to
know whether there are other examples in which the question is true. Now,
let’s move to map(X,Y ; f) when X = Y and f = id.

Proposition 4.2. Every H-space can be realized as map(X,X; id) for some
space X.

Proof. This follows from ([13], Theorem 3.6). □
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