• 제목/요약/키워드: raman microscopy

검색결과 426건 처리시간 0.033초

Rapid Detection of Methicillin Resistant Staphylococcus aureus Based on Surface Enhanced Raman Scattering

  • Han, Dae Jong;Kim, Hyuncheol
    • 대한임상검사과학회지
    • /
    • 제46권4호
    • /
    • pp.136-139
    • /
    • 2014
  • Methicillin-resistant Staphylococcus aureus (MRSA) is one of the severe nosocomial infectious agents. The traditional diagnostic methods including biochemical test, antibiotic susceptibility test and PCR amplification are time consuming and require much work. The Surface enhanced Raman spectroscopy (SERS) biosensor is a rapid and powerful tool for analyzing the chemical composition within a single living cell. To identify the biochemical and genetic characterization of clinical MRSA, all isolates from patients were performed with VITEK2 gram positive (GP) bacterial identification and Antibiotic Susceptibility Testing (AST). Virulence genes of MRSA also were identified by DNA based PCR using specific primers. All isolates, which were placed on a gold coated nanochip, were analyzed by a confocal Raman microscopy system. All isolates were identified as S. aureus by biochemical tests. MRSA, which exhibited antibiotic resistance, demonstrated to be positive gene expression of both femA and mecA. Furthermore, Raman shift of S. aureus and MRSA (n=20) was perfectly distinguished by a confocal Raman microscopy system. This novel technique explained that a SERS based confocal Raman microscopy system can selectively isolate MRSA from non-MRSA. The study recommends the SERS technique as a rapid and sensitive method to detect antibiotic resistant S. aureus in a single cell level.

Tip Enhanced Nano Raman Scattering in Graphene

  • Mun, Seok Jeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.87.2-87.2
    • /
    • 2016
  • As an era of nano science approaches, the understanding on the shape and optical properties of various materials in a nanoscale range is getting important more seriously than ever. Accordingly the development of high spatial-temporal-spectral resolution measurement tools for characterization of nanomaterials/structures is highly required. Generally, the various properties of sample can be measured independently, e.g. to observe the structural property of sample, we use the scanning electron microscopy or atomic force microscopy, and to observe optical property, we have to use another independent measurement tool such as photoluminescence spectroscopy or Raman spectroscopy. In the case of nano-materials, however, it is very difficult to find out the same position of sample at every different measurement processes, and the condition of sample can be changed by the influence of first measurement. The tip enhanced Raman scattering(TERS), which can simultaneously measure the two or more information of sample with nanoscale spatial resolution, is one of solutions of this problem. In this talk, I will present our recent nano Raman scattering data of graphene that measured by TERS and optimized tip fabrication method for efficient experiment.

  • PDF

라만 및 FT-IR 현미경을 이용한 천일염 중 미세플라스틱 분석 (Identification of Microplastics in Sea Salts by Raman Microscopy and FT-IR Microscopy)

  • Cho, Soo-Ah;Cho, Won-Bo;Kim, Su-Bin;Chung, Jae-Hak;Kim, Hyo-Jin
    • 분석과학
    • /
    • 제32권6호
    • /
    • pp.243-251
    • /
    • 2019
  • 미세플라스틱이 해양에서 대량으로 발견되어 생태계에 큰 위협이 되고 있다. 국내에서도 우리가 실생활에서 직접 섭취하거나 음식에 많이 사용되는 천일염에서 미세플라스틱이 검출되었다는 보고가 있었다. 미세플라스틱을 분석하기 위하여는 성분, 크기, 모양 등에 대한 정보가 필요하며 이를 위하여 20 ㎛ 크기까지는 FT-IR 현미경이 가장 많이 사용되고 있다. 그러나 최근에는 20 ㎛ 이하의 초 미세 플라스틱 분석이 가능한 라만 현미경법이 함께 많이 연구되고 있다. 본 연구에서는 시판 천일염 10.0 g을 녹인 후 25.4 mm × 25.4 mm 크기의 45 ㎛ mesh 필터로 여과한 후 필터 시료를 각각 FT-IR 현미경과 라만 현미경을 사용하여 미세플라스틱을 분석하였다. FT-IR 현미경의 경우 70 ㎛에서 100 ㎛까지의 3개의 폴리에틸렌(PE)와 170 ㎛의 폴리프로필렌(PP)가 검출되었다. 라만현미경에서는 45 ㎛ 필터를 사용하였음에도 불구하고 필터의 일부에 걸쳐서 여과되지 않고 존재하던 10 ㎛, 30 ㎛의 PE를 포함하여 50 ㎛에서 120 ㎛까지 총 9 개의 PE와 1 개의 40 ㎛ 크기의 폴리스티렌(PS) 1 개가 검출되었다. 검출된 PE 중에는 PE와 Al2O3가 함께 결합한 70 ㎛ 미세플라스틱과 원형이 아닌 200 ㎛ × 30 ㎛, 150 ㎛ × 20 ㎛의 비정형 PE도 함께 측정되었다. 미세플라스틱 외에도 총 100 개 이상의 입자들이 측정되었으며 이들의 조성을 보면 5 개의 셀룰로오스, 16 개의 유리류, 35 개의 탄소, 28 개의 미네랄등과 확인이 되지 못한 19 개의 입자들이 측정되었다. 따라서 라만현미경은 적외선현미경에 비하여 20 ㎛ 이하의 미세플라스틱도 측정이 가능하기 때문에 시료의 량도 10배이상 적게 사용할 수 있어 시료 전처리 및 크기에 따른 분석오차를 줄일 수 있다.

비비드 옐로우 다이아몬드의 감별 방안 연구 (Identification for the Vivid Yellow Diamonds)

  • 송정호;윤유리;송오성
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.493-497
    • /
    • 2012
  • We propose a new reliable, fast, and low cost identification method for similarly looking 0.3ct vivid yellow color of natural, HPHT treated, and synthesized diamonds. Conventional optical microscopy as well as low temperature PL(photoluminescence), FT-IR, UV-VIS-NIR, micro-Raman spectroscopy, and vibrating sample magnetometry(VSM) characterization were executed. We could not distinguish the natural diamonds from the treated or the synthesized stones with an optical microscopy, PL, FT-IR, and UV-VIS-NIR spectroscopy. However, we could identify the treated diamond with micro-Raman spectroscopy due to unique $1440cm^{-1}$ peak appearance. VSM revealed easily the synthesized diamond because of its ferromagnetic behavior. Our preliminary propose on employing the Micro-Raman spectroscopy and VSM might be suitable for identification of the similar looking vivid yellow colored diamonds.

Raman Spectroscopic Studies on Two-Dimensional Materials

  • Lee, Jae-Ung;Kim, Minjung;Cheong, Hyeonsik
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.126-130
    • /
    • 2015
  • Raman spectroscopy is one of the most widely used tools in the field of graphene and two-dimensional (2D) materials. It is used not only to characterize structural properties such as the number of layers, defect densities, strain, etc., but also to probe the electronic band structure and other electrical properties. As the field of 2D materials expanded beyond graphene to include new classes of layered materials including transition metal dichalcogenides such as $MoS_2$, new physical phenomena such as anomalous resonance behaviors are observed. In this review, recent results from Raman spectroscopic studies on 2D materials are summarized.

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

Comparison of Existing Methods to Identify the Number of Graphene Layers

  • Sharbidre, Rakesh Sadanand;Lee, Chang Jun;Hong, Seong-Gu;Ryu, Jae-Kyung;Kim, Taik Nam
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.704-708
    • /
    • 2016
  • The unique characteristics of graphene make it an optimal material for crucial studies; likewise, its potential applications are numerous. Graphene's characteristics change with the number of total layers, and thus the rapid and accurate estimation of the number of graphene layers is essential. In this work, we review the methods till date used to identify the number of layers but they incorporate certain drawbacks and limitations. To overcome the limitations, a combination of these methods will provide a direct approach to identify the number of layers. Here we correlate the data obtained from Raman spectroscopy, optical microscopy images, and atomic force microscopy to identify the number of graphene layers. Among these methods, correlation of optical microscopy images with Raman spectroscopy data is proposed as a more direct approach to reliably determine the number of graphene layers.

Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport Method

  • Lee, Sung-Hun;Yoon, Ha-Na;Yoon, Il-Sun;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.839-842
    • /
    • 2012
  • We report for the first time the synthesis of niobium dioxide nanowires on a sapphire substrate by chemical vapor transport method. We identified single crystalline nature of as-synthesized nanowires by scanning electron microscopy and transmission electron microscopy. Niobium dioxide nanowires with their large surface-to-volume ratio and high activities can be employed for electrochemical catalysts and immunosensors. The Raman spectrum of niobium dioxide nanowires also confirmed their identity.

Effect of Steady-State Oxidation on Tensile Failure of Zircaloy Cladding

  • Kim, Taeho;Choi, Kyoung Joon;Yoo, Seung Chang;Lee, Yunju;Kim, Ji Hyun
    • 방사성폐기물학회지
    • /
    • 제20권2호
    • /
    • pp.161-170
    • /
    • 2022
  • The effect of oxidation time on the characteristics and mechanical properties of spent nuclear fuel cladding was investigated using Raman spectroscopy, tube rupture test, and tensile test. As oxidation time increased, the Raman peak associated with the tetragonal zirconium oxide phase diminished and merged with the Raman peak associated with the monoclinic zirconium oxide phase near 333 cm-1. Additionally, the other tetragonal zirconium oxide phase peak at 380 cm-1 decreased after 100 d of oxidation, whereas the zirconium monoclinic oxide peak became the dominant peak. The oxidation time had no effect on the tube rupture pressure of the oxidized zirconium alloy tube. However, the yield and tensile stresses of the oxidized nuclear fuel cladding tube decreased after 100 d of oxidation. The results of the scanning electron microscopy and transmission electron microscopy were represented with the in-situ Raman analysis result for the oxide characteristics generated on the cladding of spent nuclear fuel.

Micro-Raman characterization of isolated single wall carbon nanotubes synthesized using Xylene

  • Choi, Young Chul
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.175-179
    • /
    • 2013
  • Isolated single wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition (CVD) using a liquid precursor (xylene) as a carbon source. Transmission electron microscopy (TEM) and atomic force microscopy confirmed the isolated structure of the SWCNTs. Micro-Raman measurements showed a tangential G-band peak ($1590cm^{-1}$) and radial breathing mode (RBM) peaks ($150-240cm^{-1}$). The tube diameters determined from the RBM frequencies are in good agreement with those obtained from TEM. The chirality of the isolated SWCNTs could be determined based on the energy of the laser and their diameter. A further preliminary study on the nitrogen doping of isolated SWCNTs was carried out by the simple use of acetonitrile dissolved in the precusor.