Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.175

Micro-Raman characterization of isolated single wall carbon nanotubes synthesized using Xylene  

Choi, Young Chul (Carbon Nanotube Team, Hanwha Chemical Corporation)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 175-179 More about this Journal
Abstract
Isolated single wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition (CVD) using a liquid precursor (xylene) as a carbon source. Transmission electron microscopy (TEM) and atomic force microscopy confirmed the isolated structure of the SWCNTs. Micro-Raman measurements showed a tangential G-band peak ($1590cm^{-1}$) and radial breathing mode (RBM) peaks ($150-240cm^{-1}$). The tube diameters determined from the RBM frequencies are in good agreement with those obtained from TEM. The chirality of the isolated SWCNTs could be determined based on the energy of the laser and their diameter. A further preliminary study on the nitrogen doping of isolated SWCNTs was carried out by the simple use of acetonitrile dissolved in the precusor.
Keywords
isolated single wall carbon nanotubes; liquid precusor; Raman spectroscopy; doping;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jeong MS, Han JH, Choi YC. Influence of the purification process on the semiconducting content of single-walled carbon nanotubes synthesized by arc discharge. Carbon, 57, 338 (2013). http://dx.doi.org/10.1016/j.carbon.2013.01.081.   DOI   ScienceOn
2 Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2013.14.1.001.
3 Choi WB, Chae S, Bae E, Lee JW, Cheong BH, Kim JR, Kim JJ. Carbon-nanotube-based nonvolatile memory with oxide-nitride-oxide film and nanoscale channel. Appl Phys Lett, 82, 275 (2003). http://dx.doi.org/10.1063/1.1536713.   DOI   ScienceOn
4 Lee H, Jeon J, Goak J, Kim KB, Lee N, Choi YC, Kim HS, Sun J, Park Y, Park J. Ozone electrical trimming of carbon nanotubes to improve their field-emission lifetime and uniformity. J Korean Phys Soc, 54, 185 (2009). http://dx.doi.org/10.3938/jkps.54.185.   과학기술학회마을   DOI   ScienceOn
5 Lee SM, Lee YH. Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett, 76, 2877 (2000). http://dx.doi.org/10.1063/1.126503.   DOI   ScienceOn
6 Cheung CL, Hafner JH, Odom TW, Kim K, Lieber CM. Growth and fabrication with single-walled carbon nanotube probe microscopy tips. Appl Phys Lett, 76, 3136 (2000). http://dx.doi.org/10.1063/1.126548.   DOI   ScienceOn
7 Jeong MS, Han JH, Choi YC. Influence of the purification process on the semiconducting content of single-walled carbon nanotubes synthesized by arc discharge. Carbon, 57, 338 (2013). http://dx.doi.org/10.1016/j.carbon.2013.01.081.   DOI   ScienceOn
8 Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.   DOI   ScienceOn
9 Hongo H, Yudasaka M, Ichihashi T, Nihey F, Iijima S. Chemical vapor deposition of single-wall carbon nanotubes on iron-filmcoated sapphire substrates. Chem Phys Lett, 361, 349 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00963-6.   DOI   ScienceOn
10 Biswas C, Kim KK, Geng HZ, Park HK, Lim SC, Chae SJ, Kim SM, Lee YH, Nayhouse M, Yun M. Strategy for high concentration nanodispersion of single-walled carbon nanotubes with diameter selectivity. J Phys Chem C, 113, 10044 (2009). http://dx.doi.org/10.1021/jp9017629.   DOI   ScienceOn
11 Utsumi S, Kanamaru M, Honda H, Kanoh H, Tanaka H, Ohkubo T, Sakai H, Abe M, Kaneko K. RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS. J Colloid Interface Sci, 308, 276 (2007). http://dx.doi.org/10.1016/j.jcis.2006.12.041.   DOI   ScienceOn
12 Ganter MJ, Landi BJ, Worman JJ, Schauerman CM, Cress CD, Raffaelle RP. Variation of single wall carbon nanotube dispersion properties with alkyl amide and halogenated aromatic solvents. Mater Chem Phys, 116, 235 (2009). http://dx.doi.org/10.1016/j.matchemphys.2009.03.020.   DOI   ScienceOn
13 Hafner JH, Cheung CL, Oosterkamp TH, Lieber CM. High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J Phys Chem B, 105, 743 (2001). http://dx.doi.org/10.1021/jp003948o.   DOI   ScienceOn
14 Hafner JH, Cheung CL, Lieber CM. Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J Am Chem Soc, 121, 9750 (1999). http://dx.doi.org/10.1021/ja992761b.   DOI   ScienceOn
15 Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 275, 187 (1997). http://dx.doi.org/10.1126/science.275.5297.187.   DOI   ScienceOn
16 Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes. Adv Phys, 49, 705 (2000). http://dx.doi.org/10.1080/000187300413184.   DOI   ScienceOn
17 Pimenta MA, Marucci A, Empedocles SA, Bawendi MG, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS. Raman modes of metallic carbon nanotubes. Phys Rev B, 58, R16016 (1998). http://dx.doi.org/10.1103/PhysRevB.58.R16016.   DOI
18 Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y. Optical properties of single-wall carbon nanotubes. Synth Met, 103, 2555 (1999). http://dx.doi.org/10.1016/S0379-6779(98)00278-1.   DOI   ScienceOn
19 Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00066-0.   DOI   ScienceOn
20 Jishi RA, Venkataraman L, Dresselhaus MS, Dresselhaus G. Phonon modes in carbon nanotubules. Chem Phys Lett, 209, 77 (1993). http://dx.doi.org/10.1016/0009-2614(93)87205-H.   DOI   ScienceOn
21 Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K. Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B, 63, 155414 (2001). http://dx.doi.org/10.1103/PhysRevB.63.155414.   DOI   ScienceOn