Browse > Article
http://dx.doi.org/10.5806/AST.2019.32.6.243

Identification of Microplastics in Sea Salts by Raman Microscopy and FT-IR Microscopy  

Cho, Soo-Ah (Department of pharmacy, Dongduk Women's University)
Cho, Won-Bo (Department of pharmacy, Dongduk Women's University)
Kim, Su-Bin (Korea Institute of Analytical Science & Technology)
Chung, Jae-Hak (Korea Institute of Analytical Science & Technology)
Kim, Hyo-Jin (Department of pharmacy, Dongduk Women's University)
Publication Information
Analytical Science and Technology / v.32, no.6, 2019 , pp. 243-251 More about this Journal
Abstract
Microplastics (MP) are found in large quantities in the oceans, posing a major threat to the ecosystem. In Korea, MPs have been reported to be detected in sea salts. In order to analyze MPs, information on their composition, size, and shape is required. FT-IR microscopy is used frequently to measure sizes larger than 20 ㎛. Recently, however, Raman microscopy, which can analyze ultrafine plastics below 20 ㎛, has been applied extensively. In this study, 10.0 g samples of commercially available salts were dissolved and filtered through a 45 ㎛ mesh filter with a size of 25.4 mm × 25.4 mm. These filtered samples were then analyzed by both FT-IR microscopy and Raman microscopy. A total of four MPs, including three polyethylene (PE) of size 70-100 ㎛ and a polypropylene (PP) of size 170 ㎛, were detected by FT-IR microscopy, while 10 MPs, including nine PE of size 10-120 ㎛ and one polystyrene (PS) of size 40 ㎛, were detected by Raman microscopy. Approximately, 1,000 MPs/kg was estimated, which was almost two times higher than the previous reported levels (~550-681 particles/kg in sea salts); this is because Raman microscopy can detect much smaller MPs than FT-IR microscopy. A total of 113 particles were found using Raman microscopy: Carbon (35, 31.5 %), minerals (28, 25 %), and glass (16, 14.4 %) were dominant, forming around 70% of the total, but MPs (10, 8.8 %) and cellulose (5, 4.5 %) were also found. Raman microscopy has great potential as an accurate method for measuring MPs, as it can measure smaller size MPs than FT-IR microscopy. It also has a reduced sample preparation time.
Keywords
microplastic; Identification; Polyethylene (PE); Polypropylene (PP); raman microscopy; FT-IR microscopy; table salts;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law, Science, 347, 768-771 (2015).   DOI
2 E. J. Carpenter, S. J. Anderson, G. R. Harvey, H. P. Miklas, and B. B. Beck, Science, 178, 749-750 (1972).   DOI
3 E. J. Carpenter and K. L. Smith, Science, 175, 1240 (1972).   DOI
4 K. Davidson and S. E. Dudas, Arch. Environ. Contam. Toxicology, 71, 147-156 (2016).   DOI
5 E. M. Foekema, C. D. Gruijter, M. T. Mergia, J. A. Franeker, A. T. J. Murk and A. A. Koelmans, Environ Sci. Technol., 47, 8818-8824 (2013).   DOI
6 N. P. Ivleva, A. C. Wiesheu, and R. Niessner, Angew. Chem. Int. Ed. 56 (7), 1720-1739 (2017).   DOI
7 A. R. McCormick, T. J. Hoellein, M. G. London, J. Hittie, J. W. Scott, and J.J. Kelly, Ecosphere, 7, 11 (2016).
8 R. Dris, J. Gasperi, M. Saad, C. Mirande, and B., Tassin, Mar. Pollut. Bull., 104, 290-293 (2016).   DOI
9 G. Liebezeit and E. Liebezeit, Food Addit. Contam. Part A, 31(9), 1574-1578 (2014).   DOI
10 D. W. Lachenmeier, J. Kocareva, D. Noack, and T. Kuballa, Dtsch. Lebensm., 111, 437-440 (2015).
11 G. Liebezeit and E. Liebezeit, Food Addit. Contam., 30(12), 2136-2140 (2013).   DOI
12 S. Mintenig, M. L€oder, G. Gerdts, Probenanalyse mittels Mikro-FTIR Spektroskopie, Oldenburgisch-Ostfriesischer Wasserverband (OOWV). Alfred-Wegener-Institut, Helgoland. 50 (2014).
13 D. Schymanski, C. Goldbeck, H. U. Humpf, and P. Furst, Water Res., 129, 154-162 (2018).   DOI
14 D. Yang, H Shi, J. Li, K. Jabeen, and P. Kolandhasamay, Environ. Sci. Technol., 49, 13622-13627 (2015).   DOI
15 A. Karami, A. Golieskardi, C. K. Choo, V. Larat, T. S. Galloway, and B. Salamatinia, Scientific Reports, 7, 46173 (2017).   DOI
16 M. E. Iniguez, J. A. Conesa, and A. Fullana, Scientific Reports, 7, 8620-8627 (2017).   DOI
17 D. H. Chae, I. S. Kim, Y. K. Song, S. W. Kim, and S. K. Kim, Journal of the Korean Society of Oceanography, 19, 88-98 (2014).
18 J. S. Kim, H. J. Lee, S. K. Kim, and H. J. Kim, Environ. Sci. Technol., 52(21), 12819-12828 (2018).   DOI
19 M. Cole, P. Lindeque, C. Halsband, and R. S. Galloway, Mar. Pollut. Bull., 62, 2588-2597 (2011).   DOI
20 E. Fries, J. H. Dekiff, J. Willmeyer, M. T. Nuelle, M. Ebert, and D. Remy, Environ. Sci. Processes Impacts, 15, 1949-1956 (2013).   DOI
21 A. Kaeppler, D. Fischer, S. Oberbeckmann, G. Schernewski, M. Labrenz, K. J. Einchhorn, and B. Voit, Anal. Bioanal. Chem., 408(29), 8377-8391 (2016).   DOI
22 D. Fischer, A Kaeppler, and K. J. Eichhorn, American. Lab., 47, 32-34 (2015).
23 M. G. J. Loder, M. Kuczera, S. Mintenig, C. Lorenz, and G. Gerdts, Environ. Chem., 12, 563-581, (2015).   DOI
24 A. S. Tagg, M. Sapp, J. P. Harrison, and J. J. Ojeda, Anal. Chem., 87, 6032-6040 (2015).   DOI
25 R. Lenz, K. Enders, C. A. Stedmon, D. M. A. Mackenzie, and T, G. Nielsen, Mar. Pollut. Bull., 100(1), 82-91 (2015).   DOI
26 B. E. Ossmann, G. Sarau, S. W. Schmitt, H. Holtmannspotter, S. H. Christiansen, and W. Dicke, Anal. Bioanal. Chem., 409(16), 4099-4109 (2017).   DOI
27 A. C. Wiesheu, P. M. Anger, T. Baumann, R. Niessner, and N. P. Ivleva, Anal. Methods, 8(28), 5722-5725 (2016).   DOI
28 D. Schymanski, C. Goldbeck, H. U. Humpf, and P. Furst, Water Research, 129, 154-162 (2018).   DOI
29 B. E. Obmann, G. Sarau, H. Holtmannspotter, M. Pischetsrieder, S. H. Christiansen, and W. Dicke, Water Research, 141, 307-316 (2018).   DOI
30 Y. Mato, T. Isobe, H. Takada, H. Kanehiro, C. Ohtake, and T. Kaminuma, Environ. Sci. Technol., 35(2), 318-324 (2001).   DOI
31 H. Lee, A. Kunz, W. J. Shim, and B. A. Walther, Scientific Reports, 9, 10145 (2019).   DOI
32 J. P. Harrison, J. J. Ojeda, and M. E. Romero-Gonzalez, Sci. Total Environ., 416, 455-463 (2012).   DOI