Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.12.704

Comparison of Existing Methods to Identify the Number of Graphene Layers  

Sharbidre, Rakesh Sadanand (Department of Material Science Engineering, Paichai University)
Lee, Chang Jun (Division of Industrial Metrology, Korea Research Institute of Standards and Science)
Hong, Seong-Gu (Division of Industrial Metrology, Korea Research Institute of Standards and Science)
Ryu, Jae-Kyung (Department of Dental Technology and Science, ShinHan University)
Kim, Taik Nam (Department of Material Science Engineering, Paichai University)
Publication Information
Korean Journal of Materials Research / v.26, no.12, 2016 , pp. 704-708 More about this Journal
Abstract
The unique characteristics of graphene make it an optimal material for crucial studies; likewise, its potential applications are numerous. Graphene's characteristics change with the number of total layers, and thus the rapid and accurate estimation of the number of graphene layers is essential. In this work, we review the methods till date used to identify the number of layers but they incorporate certain drawbacks and limitations. To overcome the limitations, a combination of these methods will provide a direct approach to identify the number of layers. Here we correlate the data obtained from Raman spectroscopy, optical microscopy images, and atomic force microscopy to identify the number of graphene layers. Among these methods, correlation of optical microscopy images with Raman spectroscopy data is proposed as a more direct approach to reliably determine the number of graphene layers.
Keywords
graphene; number of graphene layers; optical microscopy; Raman spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
2 Z. Ni, Y. Wang, T. Yu and Z. Shen, Nano Res., 1, 273 (2008).   DOI
3 Alexander E. Mag-isa, Choong-Kwang Lee, Sang-Min Kim, Jae-Hyun Kim and Chung-Seog Oh, Carbon, 94, 646 (2015).   DOI
4 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006).   DOI
5 L. Brown, R. Hovden, P. Huang, M. Wojcik, D. A. Muller and J. Park, Nano Lett., 12, 1609 (2012).   DOI
6 Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, Nature 459, 820 (2009).   DOI
7 M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha, Nat. Nanotechnol., 4, 383 (2009).   DOI
8 A. Sagar, Eduardo J. H. Lee, K. Balasubramanian, M. Burghard and K. Kern, Nano Lett., 9, 3124 (2009).   DOI
9 H.-Y. Cao, Z.-X. Guo, H. Xiang and X.-G. Gong, Phy. Lett. A, 376, 525 (2012).   DOI
10 Isaac Childres, Luis A. Jauregui, Wonjun Park, Helin Cao and Yong P. Chen, Purdue University, Physics Journal, Chapter 19.
11 T. Kaliannan, S. Balasubramaniam, M. Rajneesh, S.-J. Kim, Sci. Adv.Mater., 5, 542 (2013).   DOI
12 M. Reguzzoni, A. Fasolino, E. Molinari and M. C. Righi, J. Phys. Chem. C, 116, 21104 (2012).   DOI
13 Y. Zhang and C. Pan, Diam. Relat. Mater., 24, 1 (2012).   DOI
14 Alexander E. Mag-isa, Ph D thesis, Kumoh University, South Korea (2015)
15 Atomic Force Microscopy, Wikipedia, https://en.wikipedia.org/wiki/Atomic-force_microscopy
16 B. Caldwell, M. Cooper, L.G. Reid and G. Vanderheiden, Web content accessibility guidelines (WCAG) 2.0, W3C recommendation (2008).
17 C. Soldano, A. Mahmood and E. Dujardin, Carbon, 48, 2127 (2010).   DOI
18 P. E. Gaskell, H. S. Skulason, C. Rodenchuk and T. Szkopek, Appl. Phys. Lett., 94, 143101 (2009).   DOI
19 H. Yun, C.-K. Lee, A. E. Mag-Isa, J.-W. Jang, H.-J. Lee, S.-B. Lee, S.-S. Kim and J.-H. Kim, Carbon, 77, 454 (2014).   DOI
20 W. Ouyang, X.-Z Liu, Q. Li, Y. Zhang, J. Yang and Q.-shui Zheng, Nanotechnology, 24, 505701 (2013).   DOI
21 D. Yoon, H. Moon, H. Cheong, J. Choi, J. Choi and B. H. Park, J. Korean Phy. Soc., 55, 1299 (2009).   DOI
22 P. Nemes-Incze, Z. Osvath, K. Kamaras and L.P. Biro, Carbon, 46, 1435 (2008).   DOI