• 제목/요약/키워드: radius problem

검색결과 265건 처리시간 0.025초

Tilting 상태인 테이퍼 로울러의 탄성유체윤활 해석 (Elastohydrodynamic Lubrication Analysis of a Tilted Tapered Roller)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제31권4호
    • /
    • pp.177-182
    • /
    • 2015
  • Tapered roller bearings are widely used in equipment where high combined thrust and radial loads are experienced. A certain amount of tilting between the tapered rollers and the races always occurs because of bending moment load conditions and shaft deflection. It is now well understood that a coherent elastohydrodynamic lubrication (EHL) film separates the rollers and races. In spite of extensive study on EHL problems for over half a century, relatively few studies have focused on the finite line contacts problem. This study presents a complete numerical analysis of the effects of roller tilting on the EHL characteristics in a tapered roller bearing. We systematically analyze this highly nonlinear problem using finite differences with fully non-uniform grids and the Newton-Raphson method. Detailed EHL pressure distributions and film shapes are presented under moderate loads and material parameters. A very small roller tilting significantly affects the pressure distributions and film shapes near both ends of the roller. Moreover, the effect of tilting on the EHL characteristics at the small end is much greater than that at the large end. Therefore, in designing optimum profiles for tapered roller bearings, the profile radius should be larger at the small end.

쿨롬 법칙과 영상법을 이용한 와전류 브레이크의 제동토크 해석 (The Braking Torque Analysis of Eddy Current Brake with the Use of Coulomb′s law and the Method of Image)

  • 이갑진;박기환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권9호
    • /
    • pp.431-437
    • /
    • 2001
  • Since the eddy current problem usually depends on the geometry of the moving conductive sheet and the shape of the pole projection area, there is no general method to find out its analytical solution. The analysis of the eddy current in a rotating disk is performed in the case of time-invariant field to find its analytical solution. As a method to solve the eddy current problem, the concept of the Coulomb charge and image method are proposed with the consideration of the boundary condition. Firstly, the line charge is obtained from the volume charge generated in the rotating disk and Coulomb's law is applied. Secondly, the finite disk radius is considered by introducing an imaginary eddy current to satisfy the boundary condition that the radial component of the eddy current is zero at the edge of the relating disk. Thirdly, the braking torque is calculated by applying Lorentz force law. Finally, the computed braking torque is compared with the measured one As a result, it can be said that the proposed model presents fairly accurate results in a low angular velocity range although a large error is observed as the angular velocity of the disk increases.

  • PDF

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • 제38권3호
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass

  • Zou, Jin-Feng;Yang, Tao;Ling, Wang;Guo, Wujun;Huang, Faling
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.225-234
    • /
    • 2019
  • A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass is investigated, which is compatible with Mohr-Coulomb and generalized Hoek-Brown failure criteria. Based on finite difference method, plastic region is divided into a finite number of concentric rings whose thicknesses are determined internally to satisfy the equilibrium and compatibility equations, the material parameters of the rock or soil mass are assumed to be the same in each ring. For the strain-softening behavior, the strength parameters are assumed to be a linear function of deviatoric plastic strain (${\gamma}p^*$) for each ring. Increments of stress and strain for each ring are calculated with the finite difference method. Assumptions of large-strain for soil mass and small-strain for rock mass are adopted, respectively. A new numerical stepwise approach for limited pressure and plastic radius are obtained. Comparisons are conducted to validate the correctness of the proposed approach with Vesic's solution (1972). The results show that the perfectly elasto-plastic model may underestimate the displacement and stresses in cavity expansion than strain-softening coefficient considered. The results of limit expansion pressure based on the generalised H-B failure criterion are less than those obtained based on the M-C failure criterion.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

선형 탄성 문제의 경계적분식 해와 변분해의 동등성 증명 (Proof of equivalence of solutions of boundary integral and variational equations of the linear elasticity problem)

  • 유영면;박찬우;권길헌
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.1001-1004
    • /
    • 1987
  • 본 연구에서는 우선 선형 탄성문제의 변분해(variational solution)가 Sobol- ev 공간[ $H^{1}$(.OMEGA.)]= $H^{1}$(.OMEGA.)* $H^{1}$(.OMEGA.)* $H^{1}$(.OMEGA.)에서 유일하게 존재함을 재 검토하고 다음으로 경계적분식의 해도 변분해와 같음을 보인다. 이것은 선형 탄 성문제의 경우 고전해(classical solution)가 존재하지 않을 경우에도 BEM을 사용하여 변분해의 수치적 근사치를 구할 수 있다는 수학적 근거가 된다. 이를 위해서 Sobol- ev 공간 내에서의 Green's formula를 적용하는데 점하중해의 특이점(singularity)때문 에 Green's formula를 적용하기가 곤란해진다. 이 문제는 적분영역 .OMEGA.를 .OMEGA.-B$_{\rho }$로 치환하고 .rho.를 0으로 접근시키는 방법으로 해결한다. 이 때 B$_{\rho}$는 특이 점에 중심을 두고 매우 작은 변경 .rho.를 갖는 구이다.ho.를 갖는 구이다.

원통형 진동수주 파력발전장치에 의한 파 에너지 흡수 (Wave Energy Absorption by a Circular Cylinder Oscillating Water Column Device)

  • 조일형
    • 한국해안해양공학회지
    • /
    • 제14권1호
    • /
    • pp.8-18
    • /
    • 2002
  • 본 논문에서는 밑이 뚫린 원통형 진동수주 파력발전장치에 의한 파 에너지 흡수효율을 살펴보았다. 경계치 문제는 공기실내의 변동압력이 없을 때 입사파에 의한 산란문제와 공기실 내부의 변동압력에 의한 방사문제로 나누어진다. 공기실 내에서 공기 흐름에 대한 연속방정식을 적용하여 변동압력을 구하였다. 이로부터 진동수주 파력발전장치가 흡수한 시간평균 마력과 에너지 취득 폭을 구하였다. 수치계산에서는 원통형 공기실의 반지름과 잠긴 깊이 그리고 입사파의 주파수를 바꿔가면서 공기실 내부의 유량 변화와 에너지 취득 폭을 살펴보았다. 수학적으로 구한 최적의 터빈 상수를 대입하며 구한 에너지 취득 폭의 최대값은 원통형 공기실의 공진 모드 중에서 첫 번째 공진 모드인 Helmholtz모드에서 나타난다. 따라서 효율적인 파력발전장치를 제작하기 위해서는 설치될 해역의 파의 주파수와 공기실의 고유주파수가 일치되도록 공기실의 형상을 설계하여야 한다.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

摩擦 接觸으로 인한 Fretting에 대한 연구 (An Analysis of Fretting by the Frictional Contact)

  • 이대희;최동훈;윤갑영;임장근
    • Tribology and Lubricants
    • /
    • 제6권1호
    • /
    • pp.99-107
    • /
    • 1990
  • Most of machines and structures contain the elements which contact each other directly. When these elements subjected to vibration or repeated load, local relative movement occurs between the elements in contact which results in, a kind of wear. In order to know the factors which govern fretting, we have to analyze the phenomenon of microslip which causes fretting by using a general and efficient method from a viewpoint of contact mechanics. Based on the results of analysis, it is necessary to propose the way of minizing fretting which is one of the most significant surface failure. In this report, a general and efficient algorithm is applied to analyze the contact problem of the bolted joint, which is one of the typical elements damaged by fretting, with ratios of plate thickness, the ratios of Young's moduli, the ratios of the plate thickness to bolt radius varied. Finally, the ways of minizing fretting for the boked joint are suggested.

스튜어트 플랫폼의 동역학적 최적설계를 위한 해석적인 표현 (An analytical expression for a dynamic optimal design of the stewart platform)

  • 권병희;손권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.175-178
    • /
    • 1997
  • This study was carried out to obtain an analytical expression for the specifications of the Stewart Platform that minimize the maximum force acting on the hydraulic cylinder. The position and orientation of the platform were calculated by means of the inverse kinematic analysis. The maximum force to be exerted on a cylinder was calculated using the Newton's second law for the case when the platform is moved along a horizontal axis with 0.6 g, the maximum translational acceleration possible. This paper suggests a mathematical model to minimize the maximum actuating force using radius and angle ratios as design variables. Finally, a fuzzy set for the minimum actuating force is proposed for this dynamic optimal design problem.

  • PDF