DOI QR코드

DOI QR Code

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She (Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes, Anhui Jianzhu University) ;
  • J.P. Song (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2023.05.11
  • Accepted : 2024.04.26
  • Published : 2024.05.25

Abstract

Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

Keywords

Acknowledgement

This work is supported by Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes, Anhui Jianzhu University (AAE2022KF03).

References

  1. Adab, N. and Arefi, M. (2023). "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells", Eng. Comput., 39(1), 419-443. https://doi.org/10.1007/s00366-021-01580-8.
  2. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced facesheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761.
  3. Allahkarami, F. and Tohidi, H. (2022), "Axisymmetric postbuckling of functionally graded graphene platelets reinforced composite annular plate on nonlinear elastic medium in thermal environment", Int. J. Struct. Stab. Dyn., 23(03), 2350034. https://doi.org/10.1142/S0219455423500347.
  4. Arefi, M. and Adab, N. (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Wave. Random Complex Media, 1-26. https://doi.org/10.1080/17455030.2021.1989084.
  5. Arefi, M., Bidgoli, E.M., Dimitri, R.R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580.
  6. Babaei, M., Kiarasi, F., Asemi, K., Dimitri, R. and Tornabene, F. (2022), "Transient thermal stresses in FG porous rotating truncated cones reinforced by graphene platelets", Appl. Sci.-Basel, 12(8), 3932. https://doi.org/10.3390/app12083932.
  7. Bidgoli, E.M.R. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  8. Chen, X., Lu, Y., Wu, Z., Shao, Y., Xue, X. and Wu, Y. (2023), "Free vibration of in-plane bi-directional functionally graded materials rectangular plates with geometric imperfections and general elastic restraints", Aerosp. Sci. Technol., 132, 108045. https://doi.org/10.1016/j.ast.2022.108045.
  9. Ding, H.X. and She, G.L. (2023), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23(2), 97. https://doi.org/10.1007/s43452-023-00634-6.
  10. Ding, H.X., Zhang, Y.W., Li, Y.P. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells", Steel Compos. Struct., 49(3), 281-291. https://doi.org/10.12989/scs.2023.49.3.281.
  11. Esmaeili, H.R. and Kiani, Y. (2024), "Vibrations of graphene platelet reinforced composite doubly curved shells subjected to thermal shock", Mech. Bas. Des. Struct. Mach., 52(2), 650-679. https://doi.org/10.1080/15397734.2022.2120499.
  12. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
  13. Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
  14. Gao, W., Liu, Y., Qin, Z. and Chu, F. (2022), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment", Int. J. Appl. Mech., 14(7), 2250071. https://doi.org/10.1142/S1758825122500715.
  15. Gholami, R. and Ansari, R. (2018), "The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates", Appl. Math. Mech., 39, 1219-1238. https://doi.org/10.1007/s10483-018-2367-9.
  16. Gupta, A. and Talha, M. (2016), "An assessment of a nonpolynomial based higher order shear and normal deformation theory for vibration response of gradient plates with initial geometric imperfections", Compos. Part B: Eng., 107, 141-161. https://doi.org/10.1016/j.compositesb.2016.09.071.
  17. Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin. Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
  18. Kalhori, A., Bayat, M.J. and Asemi, K. (2023a), "Buckling response of functionally graded multilayer graphene plateletreinforced composite plates with circular/elliptical cutouts supporting on an elastic foundation under normal and shear loads", Front. Mech. Eng., 9, 1293713. https://doi.org/10.3389/fmech.2023.1293713.
  19. Kalhori, A., Bayat, M.J. and Asemi, K. (2023b), "Buckling analysis of stiffened functionally graded multilayer graphene platelet reinforced composite plate with circular cutout embedded on elastic support subjected to in-plane normal and shear loads", Result. Eng., 20, 101563. https://doi.org/10.1016/j.rineng.2023.101563.
  20. Khatounabadi, M., Jafari, M. and Asemi, K. (2022), "Low-velocity impact analysis of functionally graded porous circular plate reinforced with graphene platelets", Wave. Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2022.2091182.
  21. Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361-380. https://doi.org/10.12989/anr.2021.11.4.361.
  22. Li, Q., Wu, D., Chen, Liu, X., L., Yu, Y. and Gao, W. (2018), "Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation", Int. J. Mech. Sci., 148, 596-610. https://doi.org/10.1016/j.ijmecsci.2018.09.020.
  23. Li, S.R., Zhang, J.H. and Zhao, Y.G. (2007), "Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection", Thin. Wall. Struct., 45(5), 528-536. https://doi.org/10.1016/j.tws.2007.04.002.
  24. Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2024), "Thermal postbuckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations", Earthq. Struct., 26(4), 251-259. https://doi.org/10.12989/eas.2024.26.4.251.
  25. Liu, L., Li, J.M. and Kardomateas, G.A. (2019), "Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments", Compos. Struct., 209, 401-423. https://doi.org/10.1016/j.compstruct.2018.10.101.
  26. Mahani, R.B., Eyvazian, A., Musharavati, F., Sebaey, T.A. and Talebizadehsardari, P. (2020), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin Wall. Struct., 155, 106913. https://doi.org/10.1016/j.tws.2020.106913.
  27. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., ... & Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Math., 10, 583. https://doi.org/10.3390/math10040583.
  28. Mohammadi, A., Ghasemi, F.A. and Shahgholi, M. (2021), "Stability analysis of an axially moving nanocomposite circular cylindrical shell with time-dependent velocity in thermal environments", Mech. Bas. Des. Struct., 49(5), 659-688. https://doi.org/10.1080/15397734.2019.1697933.
  29. Mollaei, S., Babaei, M. and Asemi, K. (2023), "Torsional buckling of functionally graded graphene reinforced composite laminated cylindrical panel", Arch. Appl. Mech., 93(2), 427-435. https://doi.org/10.1007/s00419-022-02132-2.
  30. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39(2), 522392. https://doi.org/10.1007/s10409-022-22392-x.
  31. She, G.L., Li, Y.P., He, Y.J. and Song, J.P. (2024), "Thermal postbuckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection", Comput. Concrete, 33(3), 241-250. https://doi.org/10.12989/cac.2024.33.3.241.
  32. Shi, G.J., Wang, D.Y., Hu, B. and Cai, S.J. (2022), "Effect of initial geometric imperfections on dynamic ultimate strength of stiffened plate under axial compression for ship structures", Ocean Eng., 256, 111448. https://doi.org/10.1016/j.oceaneng.2022.111448.
  33. Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24(1), 45. https://doi.org/10.1007/s43452-023-00846-w.
  34. Song, J.P., He, Y.J. and She, G.L. (2024a), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
  35. Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aerothermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
  36. Song, J.P., She, G.L. and He, Y.J. (2024b), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
  37. Song, M., Li, X., Kitipornchai, S., Bi, Q. and Yang, J. (2019), "Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates", Nonlin. Dyn., 95, 2333-2352. https://doi.org/10.1007/s11071-018-4695-y.
  38. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FGCNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Therm. Stress., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928.
  39. Wang, Z.X., Xu, J. and Qiao, P. (2014), "Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates", Compos. Struct., 108, 423-434. https://doi.org/10.1016/j.compstruct.2013.09.024.
  40. Xia, L., Wang, R.Q., Chen, G., Asemi, K. and Tounsi, A. (2023), "The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity", Adv. Nano Res., 14(4), 375-389. https://doi.org/10.12989/.2023.14.4.375.
  41. Xu, J.Q. and She, G.L. (2023), "Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion", Steel Compos. Struct., 49(3), 325-335. https://doi.org/10.12989/scs.2023.49.3.325.
  42. Yang, F.L., Wang, Y.Q. and Liu, Y. (2022), "Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates", Aerosp. Sci. Technol., 123, 107496. https://doi.org/10.1016/j.ast.2022.107496.
  43. Yang, S.H. and Sun, C.T. (1981), "Indentation law for composite laminates", NASA CR-165460.
  44. Yas, M. H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 41, 1209-1226. https://doi.org/10.1007/s10483-020-2634-6.
  45. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  46. Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 111, 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
  47. Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
  48. Zhang, Y.W. and She, G.L. (2024c), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
  49. Zhang, Y.W. and She, G.L. (2024d), "Nonlinear harmonic resonances of spinning graphene platelets reinforced metal foams cylindrical shell with initial geometric imperfections in thermal environment", Struct. Eng. Mech., 88(5), 405-417. https://doi.org/10.12989/sem.2023.88.5.405.
  50. Zhang, Y.W. and She, G.L. (2024e), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.
  51. Zhang, Y.W., She, G. L. and Ding, H.X.(2023a), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  52. Zhang, Y.W., She, G. L. and Eltaher, M. A. (2023b), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aerosp. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.