• Title/Summary/Keyword: radical ideal

Search Result 97, Processing Time 0.018 seconds

k-NIL RADICAL IN BCI-ALGEBRAS II

  • Jun, Y.B;Hong, S.M
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.499-505
    • /
    • 1997
  • This paper is a continuation of [3]. We prove that if A is quasi-associative (resp. an implicative) ideal of a BCI-algebra X then the k-nil radical of A is a quasi-associative (resp. an implicative) ideal of X. We also construct the quotient algebra $X/[Z;k]$ of a BCI-algebra X by the k-nhil radical [A;k], and show that if A and B are closed ideals of BCI-algebras X and Y respectively, then

  • PDF

The Fuzzy Jacobson Radical of a κ-Semiring

  • Kim, Chang-Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.423-429
    • /
    • 2007
  • We define and study the fuzzy Jacobson radical of a ${\kappa}$-semiring. Also it is shown that the Jacobson radical of the quotient semiring R/FJR(R) of a ${\kappa}$-semiring by the fuzzy Jacobson radical FJR(R) is semisimple. And the algebraic properties of the fuzzy ideals FJR(R) and FJR(S) under a homomorphism from R onto S are also discussed.

A note on k-nil radicals in BCI-algebras

  • Hong, Sung-Min;Xiaolong Xin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.205-209
    • /
    • 1997
  • Hong et al. [2] and Jun et al. [4] introduced the notion of k-nil radical in a BCI-algebra, and investigated its some properties. In this paper, we discuss the further properties on the k-nil radical. Let A be a subset of a BCI-algebra X. We show that the k-nil radical of A is the union of branches. We prove that if A is an ideal then the k-nil radical [A;k] is a p-ideal of X, and that if A is a subalgebra, then the k-nil radical [A;k] is a closed p-ideal, and hence a strong ideal of X.

  • PDF

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

GENERALIZED PRIME IDEALS IN NON-ASSOCIATIVE NEAR-RINGS I

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.281-285
    • /
    • 2012
  • In this paper, the concept of *-prime ideals in non-associative near-rings is introduced and then will be studied. For this purpose, first we introduce the notions of *-operation, *-prime ideal and *-system in a near-ring. Next, we will define the *-sequence, *-strongly nilpotent *-prime radical of near-rings, and then obtain some characterizations of *-prime ideal and *-prime radical $r_s$(I) of an ideal I of near-ring N.

A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

  • Harehdashti, Javad Bagheri;Moghimi, Hosein Fazaeli
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.543-552
    • /
    • 2017
  • Let R be a commutative ring with identity, and ${\phi}:{\mathfrak{I}}(R){\rightarrow}{\mathfrak{I}}(R){\cup}\{{\varnothing}\}$ be a function where ${\mathfrak{I}}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ${\phi}$-prime ideal if $x,y{\in}R$ with $xy{\in}P-{\phi}(P)$ implies $x{\in}P$ or $y{\in}P$. For an ideal I of R, we define the ${\phi}$-radical ${\sqrt[{\phi}]{I}}$ to be the intersection of all ${\phi}$-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ${\phi}$-prime ideals of R, denoted $Spec_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum Spec(R), and show that this topological space is Noetherian if and only if ${\phi}$-radical ideals of R satisfy the ascending chain condition.

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].