• Title/Summary/Keyword: radiation wave

Search Result 746, Processing Time 0.031 seconds

Radiation Pattern of SH Waves Generated by an Orientation-adjustable Patch-type Magnetostrictive Transducer (조향 자기변형 트랜스듀서의 전단파 방사 패턴)

  • Jeon, Byung-Chul;Lee, Ju-Seung;Cho, Seung-Hyun;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.807-808
    • /
    • 2008
  • This is concerned with the radiation pattern of elastic waves in a plate generated by an orientation-adjustable patch-type magnetostrictive transducer. In general, not only the Lamb waves but also shear horizontal (SH) waves are produced by the deformation of the circular magnetostrictive patch bonded to a plate. Among the two types of waves, this paper investigates the radiation patterns of SH waves. A number of experimental results are presented. They are also accurately predicted by a theory developed by the present authors. Experimental findings were explained by a theoretical analysis.

  • PDF

Numerical Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for a Half-Immersed Cylinder in Wave and Current

  • Hong, Do-Chun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.184-188
    • /
    • 2000
  • The improved Green integral equation of overdetermined type applied to the radiation problem for an oscillating cylinder in the presence of weak current is presented. A two-dimensional Green function for the weak current is also presented. The present numerical solution of the Improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the usual Green integral equation.

  • PDF

Radiation Characteristics of Finite Strip-Grating Loaded Dielectric-Coated Coaxial Waveguide with Finite Periodic Thick Slots

  • Kim, Joong-Pyo;Lee, Chang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.2
    • /
    • pp.161-165
    • /
    • 2001
  • The radiation characteristics of leaky wave emanated from finite strip-grating loaded dielectric coated coaxial waveguide with finite periodic thick slots are investigated theoretically. The rigorous integral equations are derived for the proposed structure using the courier transform, mode expansion, and sine series expansion of the electric current on metallic strips, and the simultaneous linear equations are obtained. The effects of finite strip-grating loading on a dielectric-coated coaxial waveguide with finite periodic thick slots are examined in terms of radiation characteristics.

  • PDF

Comparison of Meteorological Elements by Type of City during Summer Season - Focus on the Daegu Metropolitan City and the Surrounding Four Regions - (하절기 도시 유형별 기상요소 비교 -대구광역시와 인근 4개 지역을 중심으로-)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.111-122
    • /
    • 2014
  • The purpose of this study is to understand relation of meteorological elements of air temperature, relative humidity and vapor pressure of four cities with Daegu. The followings are main results from this study. 1) There is very high correlation of meteorological elements according to distance between city and city. 2) In case of seaside town at Pohang, there were little changes than other cities for temperature, humidity and vapor pressure. 3) It was analysed stable and similar diurnal variation in water vapor pressure than air temperature and relative humidity at all observation site.

Radiation Force Exerted on a Homogeneous Sphere by Two Circularly-Polarized Counterpropagating TEM00 Laser Beams (서로 마주보며 비춰진 원형편극된 두 레이저 광속내에 놓인 균질구에 작용하는 광압 분포 및 특성)

  • 류지욱
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.74-82
    • /
    • 1991
  • This study is to investigate the distribution of the radiation force exerted on a homogeneous sphere by two circularly-polarized counterpropagating $TEM_{00}$ laser beams. The time-averaged expressions of the rediation force are derived for both cases of two interfering $TEM_{00}$ laser beams and a standing plane electromagnetic wave. The radiation force is numerically calculated and the physical interpretations of computed results are presented. The results in this paper will be useful in the optical levitation experiment using two counterpropagating $TEM_{00}$ laser beams or a standing plane electomagnetic wave.

  • PDF

Coupling mechanism of a loop-type ground radiation antenna

  • Zahid, Zeeshan;Kim, Hyeongdong
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.528-535
    • /
    • 2019
  • The coupling mechanism of a loop-type ground radiation antenna is investigated in this paper. We use the equivalent circuit model of the antenna and a full-wave simulation to explain the coupling mechanism of the antenna. We analyze the effects of various antenna parameters on the coupling between the antenna element and the ground plane to examine the conditions for enhancing the coupling. Based on simulations with the equivalent circuit model, full-wave simulations, and measurements, we propose optimal design considerations for the antenna. The findings of this study will aid the design and understanding of loop-type ground radiation antennas for mobile devices.

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.

Characteristics of the Group-Bounded Long Wave (파군에 따른 장주기파의 거동특성)

  • 이철응;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.61-71
    • /
    • 1994
  • A modified method obtained by expanding Longuet-Higgins and Stewart's method (1964) is proposed. which can easily derive the group-bountied long wave due to the irregular were group as well as the regular wave group. The result of the proposed method agree well with those of both second order nonlinear theory and radiation stress theory. Particularly in the shallow water region, three equations from the proposed method, the second order nonlinear theory and the radiation stress theory become identical.

  • PDF

Surface wave scattering by finite periodic gratings of an arbitrary profile in a grounded plane (접지된 유전체 슬랩 도파로에서 주기적인 임의 형태의 격자에 의한 표면파 산란)

  • Lee, Cheol-Hun;Jo, Ung-Hui;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.11
    • /
    • pp.1-7
    • /
    • 2000
  • Surface wave scattering by periodic grooves of arbitrary profile in a grounded dielectric slab is investigated for the TE surface wave incidence. Both the finite and infinite periodic geometries are considered. The former case is analyzed by using of hybrid FEM/MOM and the latter by using of full MOM procedure. Some numerical results for the reflected and transmitted powers in a grounded dielectric slab, radiation power into the free space, and radiation patterns in case of finite structure and for the dispersion diagram in case of infinite structure are presented. And some descriptions on the relationship between the finite and infinite structure such as the maximum beam angle are given.

  • PDF

Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet (축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF