• Title/Summary/Keyword: radiation detector

Search Result 842, Processing Time 0.035 seconds

An implementation of portable gamma ray detection platform using Cortex-A8 (Cortex-A8을 이용한 휴대용 감마선 검출 플랫폼 구현)

  • Seo, Jae-Gil;Lee, Yoon-Ho;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.1028-1033
    • /
    • 2013
  • As safety and security systems of shipping logistics are reinforced all over the world, ubiquitous technology-based core technology for safety and security is developing to build the system of logistics security. It is feared that the logistics security system of Korea has a possibility to technically depend on developed countries in the futures. Because the essential skills and equipment to retain security of logistics are not developed. It is urgent to introduce a logistics security system that fully integrates the entire logistics segment in the future. Thus, the necessity of developing the portable radiation detector which can detect gamma-ray nuclide is increasing for reinforcing safety and security systems. In this paper, a research suggests the implementation of portable radiation detector platform using Cortex-A8.

Broad Beam Gamma-Ray Spectrometric Studies with Environmental Materials

  • El-Kateb, Abdul-Hamid Hussein
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • Background: Gamma-ray spectrometry helps in radiation shielding problems and different applications of radioisotopes. Experimental arrangements including broad beam geometries are widely used. The aim is to investigate and evaluate the ${\gamma}-ray$ spectra via attenuation by environmental materials. Materials and Methods: The photo peak to nominated parts in the ${\gamma}-ray$ spectra and the attenuation coefficients ${\mu}_b/{\rho}$ from broad beam geometries are measured for the materials water, soil, sand and cement at the energies 0.662, 1.25, and 1.332 MeV with a $3{^{\prime}^{\prime}}{\times}3{^{\prime}^{\prime}}$ NaI(Tl) detector. Results and Discussion: The ${\gamma}-ray$ spectra vary according to changes in the effective atomic number $Z_{eff}$ of the attenuator, the photon energy and the solid angle. The peak to total ratios are the most sensitive parts to variations in the experimental conditions and overturn in the region 0.663 MeV to 1.332 MeV. This is indicated as inversion trend. The results are discussed in view of $Z_{eff}$ and the experimental conditions. The intensity build-up is larger at the lower energy and larger scattering angles in agreement with Klein-Nishina formula and other results. The build-up factor B is$${\sim_=}$$1 at high ${\gamma}-energies$ and small scattering angles. Conclusion: The sensitivity to material characteristics decrease gradually from peak: to total, to Compton valley, to Compton plateau ratios. Rigorous collimation is necessary at small energies. Cement, of the largest $Z_{eff}$, is characterized by the maximum broad beam mass attenuation coefficients ${\mu}_b/{\rho}$. The obtained results provide information to decide for the suitable experimental set-up based on aim of the work.

Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator (선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석)

  • Koo, Ki-Lae;Yang, Oh-Nam;Lim, Cheong-Hwan;Choi, Won-Sik;Shin, Seong-Soo;Ahn, Woo-Sang
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.

Fabrication of Fiber-optics Detector for Measuring Radioactive Waste (방사성 오염도 측정을 위한 광섬유 검출기 제작)

  • Kim, Jeong-Ho;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2015
  • In this study, an optical fiber detector was constructed by using a Ce:GAGG scintillator, optical fiber, and photomultiplier. The single crystal size of the scintillator was set to $3{\times}3{\times}20mm^3$ after simulating the counting efficiency of gamma rays in the scintillator by using the MCNPX code. The constructed detector used the standard gamma ray sources $^{137}Cs$ and $^{133}Ba$ to measure radiation and analyze the spectral characteristics of gamma rays. The resulting trend curve showed excellent linearity with an R-squared value of 0.99741, and the detector characteristics were found to vary 2% or less with distance based on comparison with the MCNPX value. Furthermore, the spectroscopic analysis of the gamma ray energy from the single-ray and mixed-ray sources showed that $^{137}Cs$ had its peak energy at 662 keV, and $^{133}Ba$ had at 356 keV. It seems that if the fiber-optics detector is used, working hours and exposure of worker can be reduced.

A Study on the Proper Chest Exposure Conditions of Mobile Digital X-ray Unit by Exposure Index (Exposure Index를 이용한 이동형 디지털 X선 장치의 흉부촬영 적정노출조건에 관한 연구)

  • Kim, Jae-In;Lee, Yang-Sub;Jang, Dong-Soo;Jung, Min-Cheol;Bae, Seung-Ho;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2011
  • The purpose of this report is recommending a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The experiment was performed with mobile digital X-ray unit and used a acrylic phantom for exposure index measurement. Exposure modality was kVp, mAs, SID. After every exposure, make a data sheet for characteristic curve of detector response. The equipment performed Mobile digital X-ray unit provide the user with values ralated to the incident exposure(air kerma)to the digital detector. They are showed as a logarithmic function shaped. As a result, DEI means a relative measure of exposure to the detector, as compared to the expected exposure for a particular anatomical view. Radiographic technique is the combination of factors used to exposure an anatomical part to produce a high quality radiography and technique charts used most commonly by radiographers to produce consistently exposure level which patient dose can be kept acceptably low.

  • PDF

Optimal Exposure Conditions according to Detector Type in Chest Digital Radiography (디지털흉부X선촬영에서 검출기 방식에 따른 최적의 노출조건)

  • Lee, Won-Jeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.213-221
    • /
    • 2015
  • The aim of this study was to set up the optimal exposure condition according to detector type considering image quality (IQ) with radiation dose in chest digital radiography. We used three detector type such as flat-panel detector (FP) and computed radiography (CR), and charge-coupled device (CCD). Entrance surface dose (ESD) was measured at each exposure condition combined tube voltage with tube current using dosimeter, after attaching on human phantom, it was repeated 3 times. Phantom images were evaluated independently by three chest radiologists after blinding image informations. Standard exposure condition using each institution was 117 kVp-AEC at FP and 117 kVp-8 mAs at CR, and 117 kVp-8 mAs at CCD. Statistical analysis was performed by One way ANOVA (Dunnett T3 test) using SPSS ver. 19.0. In FP, IQ scores were not significant difference between 102 kVp-4 mAs and 117 kVp-AEC (28.4 vs. 31.1, p=1.000), even though ESD was decreased up to 50% ($62.3{\mu}Gy$ vs. $125.1{\mu}Gy$). In CR, ESD was greatly decreased from 117 kVp-8 mAs to 90 kVp-8 mAs without significant difference of IQ score (p=1.000, 24.6 vs. 19.5). In CCD, IQ score of 117 kVp-8 mAs was similar with 109 kVp-8 mAs (29.6 vs. 29.0), with decreasing from $320.8{\mu}Gy$ to $284.7{\mu}Gy$ (about 11%). We conclude that optimal x-ray exposure condition for chest digital radiography is 102 kVp-4 mAs in FP and 90 kVp-8 mAs in CR, and 109 kVp-8 mAs in CCD.

Study of the Radioactive Source Detection and the Visualization with the Stereo Radiation Detector (스테레오 기반 감마선원 탐지 및 가시화에 관한 연구)

  • Park, Gang-teak;Lee, Nam-ho;Cha, Han-ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1100-1102
    • /
    • 2015
  • In the study, stereo-based of gamma-ray sources detector for the space including the gamma-ray source to scan in a raster scan method, and obtains a visible light image and the gamma-ray image. We went to retrieve and visualize the distance to source and the direction of the 3-dimension information from Stereo gamma-ray detectors. Configuration of the detector consisted of gamma-ray detecting sensor for gamma-ray Sources, pan-tilt for the scanning of the raster for detecting sources, and CCD camera for visible-light image. Implement a stereo structure of the device to measure the spatial distribution of source, the gamma-ray Detector and CCD camera for the stereo image acquisition was as each configuration 2. The gamma-ray detector and a visible light camera to revision the distribution of detection source, After performing each of the cameras of the stereo correction and shows the distribution of the gamma-ray Sources through 중첩 visible light image and the gamma-ray image. After Rectification process of Left and right image, we were derived visualization results of the stereo image.

  • PDF

Characterization of saturation of CR-39 detector at high alpha-particle fluence

  • Ghazaly, M. El;Hassan, Nabil M.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.432-438
    • /
    • 2018
  • The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from $0.06{\times}10^8$ to $7.36{\times}10^8\;alphas/cm^2$ from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of $70^{\circ}C$ for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV-Visible (UV-Vis) absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of $4.05{\times}10^8$, $5.30{\times}10^8$, and $7.36{\times}10^8\;alphas/cm^2$. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs) in measurement of high fluence of heavy ions as well as in radiation dosimetry.

Performance Test of Portable Hand-Held HPGe Detector Prototype for Safeguard Inspection (안전조치 사찰을 위한 휴대형 HPGe 검출기 시제품 성능평가 실험)

  • Kwak, Sung-Woo;Ahn, Gil Hoon;Park, Iljin;Ham, Young Soo;Dreyer, Jonathan
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • IAEA has employed various types of radiation detectors - HPGe, NaI, CZT - for accountancy of nuclear material. Among them, HPGe has been mainly used in verification activities required for high accuracy. Due to its essential cooling component(a liquid-nitrogen cooling or a mechanical cooling system), it is large and heavy and needs long cooling time before use. New hand-held portable HPGe has been developed to address such problems. This paper deals with results of performance evaluation test of the new hand-held portable HPGe prototype which was used during IAEA's inspection activities. Radioactive spectra obtained with the new portable HPGe showed different characteristics depending on types and enrichments of nuclear materials inspected. Also, Gamma-rays from daughter radioisotopes in the decay series of $^{235}U$ and $^{238}U$ and characteristic x-rays from uranium were able to be remarkably separated from other peaks in the spectra. A relative error of enrichment measured by the new portable HPGe was in the range of 9 to 27%. The enrichment measurement results didn't meet partially requirement of IAEA because of a small size of a radiation sensing material. This problem might be solved through a further study. This paper discusses how to determine enrichment of nuclear material as well as how to apply the new hand-held portable HPGe to safeguard inspection. There have been few papers to deal with IAEA inspection activity in Korea to verify accountancy of nuclear material in national nuclear facilities. This paper would contribute to analyzing results of safeguards inspection. Also, it is expected that things discussed about further improvement of a radiation detector would make contribution to development of a radiation detector in the related field.

Evaluation of Surface Radiation Dose Reduction and Radiograph Artifact Images in Computed Tomography on the Radiation Convergence Shield by Using Sea-Shells (전산화단층영상장비에서 패각을 이용한 방사선 융합차폐체의 표면 방사선량 감소율과 방사선 인공물 영상 평가)

  • Seoung, Youl-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.113-120
    • /
    • 2017
  • The purpose of this present study was to evaluate the surface radiation dose reduction and radiograph artifact images in computed tomography (CT) for the manufactured radiation shields by using sea-shells. The radiation convergence shields were made from silicons, sea-shells, barium powders, producted circle types of diameter 50 mm, thickness 3.5 mm for 5 kinds (only silicon shield, only barium shield, mixed sea-shells with silicon shield, mixed barium with silicon shield, mixed sea-shells with barium and silicon shield). Radiation generation and acquisition were used 4-channel multi-detector CT. The results of this study showed that mixed sea-shells with silicon shields could reduce the surface dose of 5.3% without radiograph artifact images. In the future, we will expect the radiation convergence shield as environmentally friendly materials by using the recycling of sea-shells with the advantages of silicon which can make various shapes.